Skip to main content

Lipases: A Promising Tool for Food Industry

  • Chapter
  • First Online:
Green Bio-processes

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Lipases (triacylglycerol acylhydrolases EC: 3.1.1.3) are universal enzymes, present in all the living creatures, i.e. plants, animals, fungi and bacteria. Their basic function is to catalyze the hydrolysis of lipid into free fatty acid and glycerol at the interface of aqueous and organic solvent, which broadens its applications in various industries. Lipases catalyze a wide range of industrially important reactions: transesterifications, esterifications, interesterifications, etc. and also shows enantio-selectivity due to which they are considered as indispensable tools in food, pharmaceuticals, biofuel, diagnostics, chiral chemistry, drug, detergent, oleochemicals, cosmetics, leather, biosensor industry, etc. The present chapter deals with the production of lipases and their various applications in the food industry such as dairy, bakery, egg processing, oil and fat, flavouring and aroma, meat and fish processing, etc. Various advanced technologies such as metagenomics, directed evolution, genetic engineering, protein engineering, etc. have been discussed to add desired trades in enzymes and to achieve high yield. Light has also been thrown on the key players in global lipase industry and commercially available lipases in the ending notes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Gomi K, Hasegawa F, Machida M (2006) Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia 162:143–153

    Article  CAS  Google Scholar 

  • Ang YKWC, Liu KS, Huang YW (1999) Asian foods-science and technology. Technomic Publication Co., Lancaster, Pa, pp 181–183

    Google Scholar 

  • Aravindan R, Anbumathi P, Viruthagiri T (2007) Lipase applications in food industry. Ind J Biotechnol 6:141–158

    CAS  Google Scholar 

  • Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  CAS  Google Scholar 

  • Baldessari A, Iglesias LE (2012) Lipases in green chemistry: acylation and alcoholysis on steroids and nucleosides. In: Lipases Phospholipases, pp 457–469

    Google Scholar 

  • Bloomer S, Adlercreutz P, Mattiasson B (1992) Facile synthesis of fatty acid esters in high yields. Enzyme Microb Technol 14:546–552

    Article  CAS  Google Scholar 

  • Bradoo S, Saxena RK, Gupta R (1999) Two acidothermotolerant lipases from new variants of Bacillus sp. World J Microbiol Biotechnol 15:97–102

    Article  CAS  Google Scholar 

  • Buisman GJH, Van-Heltersen CTW, Kramer GFH, Veldsnik JW, Derksen JTP (1998) Enzymatic esterification of functionalized phenols for the synthesis of lipophilic antioxidants. Biotechnol Lett 20:131–136

    Article  CAS  Google Scholar 

  • Casas-Godoy L, Duquesne S, Bordes F, Sandoval G, Marty A (2012) Lipases: an overview. Methods Mol Biol 861:3–30. https://doi.org/10.1007/978-1-61779-600-5_1

    Article  CAS  PubMed  Google Scholar 

  • Cavalcanti-Oliveira E, da Silva PR, Ramos AP, Aranda DAG, Freire DMG (2011) Study of soybean oil hydrolysis catalyzed by Thermomyces lanuginosus lipase and its application to biodiesel production via hydroesterification. Enzyme Res 2011:1–8. https://doi.org/10.4061/2011/618692

    Article  CAS  Google Scholar 

  • Chang MK, Abraham G, John VT (1990) Production of cocoa butter-like fat from interesterification of vegetable oils. J Am Oil Chem Soc 67:832–834

    Google Scholar 

  • Chang SW, Shaw JF, Shieh CJ (2003) Optimization of enzymatically prepared hexyl butyrate by lipozyme IM-77. Enzymatic synthesis of Hexyl Butyrate. Food Technol Biotech 41(3):237–243

    Google Scholar 

  • Custry F, Fernander N, Shahani KM (2000) Effect of enzyme association on bread dough performance: a response surface study. Food Sci Technol lnt 6:117–266

    Article  Google Scholar 

  • David G (2017) Lipases industrial applications: focus on food and agroindustries. OCL 24(4):D403

    Google Scholar 

  • David MHL, Lemmens HOJ, Gunther H, Roper HW (1989) Surface-active acylated alkylglycosides and their preparation by esterification in presence of an enzyme. European Patent 334:498

    Google Scholar 

  • De Maria L, Vind J, Oxenbøll KM, Svendsen A, Patkar S (2007) Phospholipases and their industrial applications. Appl Microbiol Biotechnol 74:290–300

    Article  CAS  Google Scholar 

  • Dhake KP, Thakare DD, Bhanage BM (2013) Lipase: a potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds. Flavour Frag J 28:71–83

    Article  CAS  Google Scholar 

  • Farahat SM, Rabie AM, Faras AA (1990) Evaluation of the proteolytic and lipolytic activity of different Penicillium roqueforti strains. Food Chem 36:169–180

    Article  CAS  Google Scholar 

  • Fatima S, Ajmal R, Badr G, Khan RH (2014) Harmful effect of detergents on lipase. Cell Biochem Biophys 70(2):759–763. https://doi.org/10.1007/s12013-014-9978-4

    Article  CAS  PubMed  Google Scholar 

  • Fekkes P, Driessen AJ (1999) Protein targeting to the bacterial cytoplasmic membrane. Microbiol Mol Biol Rev 63(1):161–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gandhi NN (1997) Applications of lipase. JAOCS 74(6)

    Google Scholar 

  • Gerhartz W (1990) Industrial uses of enzymes. In: Enzymes in industry—production and application, VCH, Weinheim, pp 77–148

    Google Scholar 

  • Ghanem EH, Al-Sayed HA, Saleh KM (2000) An alkalophilic thermostable lipase produced by a new isolate of Bacillus alcalophilus. World J Microbiol Biotechnol 16:459–464

    Google Scholar 

  • Ghosh PK, Saxena RK, Gupta R, Yadav RP, Davidson S (1996) Microbial lipases: production and applications. Sci Prog 79(2):119–157

    CAS  PubMed  Google Scholar 

  • Gilbert EJ, Drozd JW, Jones CW (1991) Physiological regulation and optimization of lipase activity in Pseudomonas aeruginosa EF2. J Gen Microbiol 137:2215–2221

    Article  CAS  Google Scholar 

  • Godfredson SE (1990) In: Fogarty WM, Kelly ET (eds) Microbial enzymes and biotechnology. Elsevier Applied Science, The Netherlands, pp 255–273

    Google Scholar 

  • Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781

    Article  CAS  Google Scholar 

  • Haelck L, Spener F (1989) Enzyme functionalization for alternate applications of natural fats. DECHEMA Biotech Conf 3:113–116

    Google Scholar 

  • Huang WC, Chen CY, Wu SJ (2017) Almond skin polyphenol extract inhibits inflammation and promotes lipolysis in differentiated 3T3-L1 adipocytes. J Med Food 20:103–109

    Article  CAS  Google Scholar 

  • Jaeger KE, Rosenau F (2004) Overexpression and secretion of Pseudomonas lipases. Pseudomonas 3:491–508

    Article  CAS  Google Scholar 

  • Jo JC, Kim SJ, Kim HK (2014) Transesterification of plant oils using Staphylococcus haemolyticus L62 lipase displayed on Escherichia coli cell surface using the OmpA signal peptide and EstAb8 anchoring motif. Enzyme Microb Technol 67:32–39

    Article  CAS  Google Scholar 

  • Jooyandeh H, Amarjeet K, Minhas KS (2009) Lipases in dairy industry: a review. Food Sci. Technol 46(3):181–189

    CAS  Google Scholar 

  • Kanwar L, Gogoi BK, Goswami PG (2002) Production of a Pseudomonas lipase in n-alkane substrate and its isolation using an improved ammonium sulfate precipitation technique. Bioresour Technol 84(3):207–211

    Article  CAS  Google Scholar 

  • Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47:555–569

    Article  CAS  Google Scholar 

  • Kuchner O, Arnold FH (1997) Directed evolution of enzyme catalysts. Trends Biotechnol 15(12):523–530

    Google Scholar 

  • Kumar S, Katiyar N, Ingle P, Negi S (2011) Optimization of lipase production using grease waste as substrate through EVOP-factorial design technique. Bioresour Technol 102:4909–4912

    Article  CAS  Google Scholar 

  • Kumar S, Mathur A, Singh V, Nandy S, Khare SK, Negi S (2012) Bioremediation of waste cooking oil using a novel lipase produced by Penicillium chrysogenum SNP5 grown in solid medium containing waste grease. Bioresour Technol 120:300–304

    Article  CAS  Google Scholar 

  • Kumar S, Yadav RK, Negi S (2014) A comparative study of immobilized lipase produced from Penicillium chrysogenum SNP5 on two different anionic carriers for its pH and thermostability. Ind J Biotechnol 13:301–305

    CAS  Google Scholar 

  • Lampi AM, Damerau A, Li J, Moisio T, Partanen R, Forssell P, Piironen V (2015) Changes in lipids and volatile compounds of oat flours and extrudates during processing and storage. J Cereal Sci 62:102–109

    Article  CAS  Google Scholar 

  • Ling M, Huiping L (2005) The formation of flavouring and its influencing factors in cheese. Dairy Sci Technol 86(4):145–148

    Google Scholar 

  • Liu IL, Tsai SW (2003) Improvements in lipase production and recovery form Acinetobacter radioresistens in presence of polypropylene powders filled with carbon sources. Appl Biochem Biotechnol 104:129–140

    Article  CAS  Google Scholar 

  • Lorenzo MD, Hidalgo A, Haas M, Bornscheuer UT (2005) Heterologous production of functional forms of Rhizopus oryzae lipase in Escherichia Coli. Appl Environ Microbiol 71(12):8974–8977

    Article  Google Scholar 

  • Macrae AR (1984) Microbial lipases as catalysts for interesterification of oils, biotechnol. Oils Fats Ind AOCS Monogr 11:189–198

    Google Scholar 

  • Mahler GF, Kok RG, Cordenons A, Hellingwerf KJ, Nudel BC (2000) Effects of carbon sources on extracellular lipase production and lipA transcription in Acinetobacter calcoaceticus. J Ind Microbiol Biotechnol 24:25–30

    Article  CAS  Google Scholar 

  • Maugard T, Rejasse B, Legoy MD (2002) Synthesis of water-soluble retinol derivatives by enzymatic method. Biotechnol Prog 18:424–428

    Article  CAS  Google Scholar 

  • Moreau RA, Harron AF, Powell MJ, Hoyt JL (2016) A comparison of the levels of oil, carotenoids, and lipolytic enzyme activities in modern lines and hybrids of grain sorghum. J Am Oil Chem Soc 93:569–573

    Article  CAS  Google Scholar 

  • Nagao A, Kito M (1990) Manufacture of O-acylated amino acids as emulsifying agents for foods. Japanese Patent 2,17,156

    Google Scholar 

  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F (1992) The alpha/beta hydrolase fold. Protein Eng 5:197–211

    Article  CAS  Google Scholar 

  • Ota Y, Machida H (1990) Manufacture of sucrose fatty acid esters with lipase, Japanese Patent 2,60,591

    Google Scholar 

  • Patil KJ, Chopda MZ, Mahajan RT (2011) Lipase biodiversity. Indian J Sci Technol 4:971–982

    CAS  Google Scholar 

  • Primozic M, Kavcic S, Knez Z, Leitgeb M (2016) Enzyme-catalyzed esterification of d, l-lactic acid in different SCF/IL media. J Supercrit Fluids 107:414–421

    Article  CAS  Google Scholar 

  • Quyen TD, Vu CH, Le GT (2012) Enhancing functional production of a chaperone-dependent lipase in Escherichia coli using the dual expression cassette plasmid. Microb Cell Fact 1(11):29. https://doi.org/10.1186/1475-2859-11-29

  • Rashid N, Shimada Y, Ezaki S, Atomi H, Imanaka T (2001) Low temperature lipase from psychrotrophic Pseudomonas sp. Strain KB700A. Appl Environ Microbiol 67:4064–4069

    Google Scholar 

  • Rashid FAA, Rahim RA, Ibrahim D, Balan A, Bakar NMA (2013) Purification and properties of thermostable lipase from a thermophilic bacterium, bacillus licheniformis IBRL-CHS2. J Pure Appl Microbiol 7:1635–1645

    CAS  Google Scholar 

  • Rathi P, Saxena RK, Gupta R (2001) A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochem 37:187–192

    Article  CAS  Google Scholar 

  • Rathi P, Goswami VK, Sahai V, Gupta R (2002) Statistical medium optimization and production of a hyperthermostable lipase from Burkholderia cepacia in a bioreactor. J Appl Microbiol 93:930–936

    Article  CAS  Google Scholar 

  • Raveendran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK, Madhavan A, Rebello S, Pandey A (2018) Applications of microbial enzymes in food industry. Food Technol Biotechnol 56(1):16–30

    Article  Google Scholar 

  • Robert H (2015) Lipases in baking. Lipinov. Adebiotech, Romainville, FR

    Google Scholar 

  • Romo-Sánchez S, Alves-Baffi M, Arévalo-Villena M, Ubeda-Iranzo J, Briones-Pérez A (2010) Yeast biodiversity from oleic ecosystems: study of their biotechnological properties. Food Microbiol 27(4):487–492. https://doi.org/10.1016/j.fm.2009.12.009

    Article  CAS  PubMed  Google Scholar 

  • Rosenau F, Jaeger K (2000) Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie 82(11):1023–1032

    Article  CAS  Google Scholar 

  • Rosenau F, Tommassen J, Jaeger KE (2004) Lipase-specific foldases. ChemBioChem 5(2):152–161

    Article  CAS  Google Scholar 

  • Salaberria F, Palla C, Carrin ME (2017) Hydrolytic activity of castor bean powder: effect of gum arabic, lipase and oil concentrations. J Am Oil Chem Soc 94:741–745

    Article  CAS  Google Scholar 

  • Sanchez M, Prim N, Rendez-Gil F, Pastor FIJ, Diaz P (2002) Engineering of bakers yeasts, Escherichia coli and Bacillus hosts for the production of Bacillus subtilis lipase A. Biotechnol Bioeng 78:339–345

    Google Scholar 

  • Seino H, Uchibori T, Nishitani T, Inamasu S (1984) Enzymatic synthesis of carbohydrate esters of fatty acids (I) esterification of sucrose, glucose, fructose and sorbitol. J Am Oil Chem Soc 61:1761–1765

    Article  CAS  Google Scholar 

  • Senanayake SN, Shahidi F (2002) Lipase-catalyzed incorporation of docosahexaenoic acid (DHA) into borage oil: optimization using response surface methodology. Food Chem 77:115–123

    Article  Google Scholar 

  • Sharma AK, Sharma V, Saxena J (2016) Isolation and screening of extracellular lipase producing fungi from soil. Am J Pharm Health Res 4(8):38–50

    CAS  Google Scholar 

  • Shruthi H, Babu MM, Sankaran K (2010) TAT-pathway-dependent lipoproteins as a niche-based adaptation in prokaryotes. J Mol Evol 70(4):359–370. https://doi.org/10.1007/s00239-010-9334-2

    Article  CAS  PubMed  Google Scholar 

  • Shukla AK (2014) Biodiversity in Aspergillus nidulans group on the basis of lipases profile. Int J Sci Res 3:1391–1394

    Google Scholar 

  • Sun Q, Wang H, Zhang H, Luo H, Shi P, Bai Y, Lu F, Yao B, Huang H (2016) Heterologous production of an acidic thermostable lipase with broad-range pH activity from thermophilic fungus Neosartorya fischeri P1. J Biosci Bioeng 122(5):539–544. https://doi.org/10.1016/j.jbiosc.2016.05.003

    Article  CAS  PubMed  Google Scholar 

  • Svendsen A (2000) Review: lipase protein engineering. Biochim Biophys Acta 1543(2):223–238

    Article  CAS  Google Scholar 

  • Thakur S (2012) Lipases, its sources, properties and applications: a review. Int J Sci Eng Res 3:1–29

    Google Scholar 

  • Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, Van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64(3):515–547

    Article  CAS  Google Scholar 

  • Valero F (2012) Heterologous expression systems for lipases: a review, vol 861, pp 161–178

    Google Scholar 

  • Verma N, Thakur S, Bhatt AK (2012a) Microbial lipases: industrial applications and properties (a review). Int Res J Biol 1(8):88–92

    Google Scholar 

  • Verma N, Thakur S, Bhatt AK (2012) Microbial lipases: industrial applications and properties (a review). Int Res J Biol Sci 1(8):88–92. ISSN 2278-3202

    Google Scholar 

  • Villeneuve P, Muderhwa JM, Graille J, Haas MJ (2000) Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. J Mol Catal B Enzym 9:113–148

    Article  CAS  Google Scholar 

  • Wu X, You P, Su E, Xu J, Gao B, Wei D (2012) In vivo functional expression of a screened P. aeruginosa chaperone-dependent lipase in E. coli. BMC Biotechnol 12:58. https://doi.org/10.1186/1472-6750-12-58

  • Xiao Z, Hou X, Lyu X, Zhao JY, Xi L, Li J, Lu JR (2015) Enzymatic synthesis of aroma acetoin fatty acid esters by immobilized Candida antarctica lipase B. Biotechnol Lett 37:1671–1677

    Article  CAS  Google Scholar 

  • Xiao F, Li Z, Pan L (2017) Application of microbial lipase and its research progress. Progress Appl Microbiol 8–14

    Google Scholar 

  • Xiaolong Xiong et al (2010) Lipase catalytic drug synthesis research progress. Chem Biol Eng 27(8):1–8

    Google Scholar 

  • Xie W, Khosasih V, Suwanto A, Kim HK (2012) Characterization of lipases from Staphylococcus aureus and Staphylococcus epidermidis isolated from human facial sebaceous skin. J Microbiol Biotechnol 22:84–91

    Article  CAS  Google Scholar 

  • Zaks A, Gross AT (1990) Production of monoglycerides by enzymatic transesterification. World Organization Patent 90, 04,033

    Google Scholar 

  • Zin NBM, Yusof BM, Oslan SN, Wasoh H, Tan JS, Ariff AB, Halim M (2017) Utilization of acid pre-treated coconut dregs as a substrate for production of detergent compatible lipase by Bacillus stratosphericus. AMB Express 7:13. https://doi.org/10.1186/s13568-017-0433-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Negi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Negi, S. (2019). Lipases: A Promising Tool for Food Industry. In: Parameswaran, B., Varjani, S., Raveendran, S. (eds) Green Bio-processes. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3263-0_10

Download citation

Publish with us

Policies and ethics