Skip to main content

In Vitro Conservation of Date Palm Germplasm

  • Chapter
  • First Online:
Date Palm Biotechnology

Abstract

Date palm (Phoenix dactylifera L.) germplasm is difficult to conserve and store in the form of offshoots or in field collections. Tissue culture technologies have had a major impact on the ex situ conservation of plant genetic resources. In vitro culture techniques supplement date palm conservation efforts and have been applied to germplasm collection, preservation and rapid clonal multiplication. In vitro storage methods have been developed for preservation of date palm germplasm and can be used efficiently for international exchange of germplasm because of their obvious advantages over in vivo material. Preservation of plant cells, meristems and somatic embryos has become an important tool for long-term storage of germplasm utilizing minimum space and low maintenance. Short- and mid-term storage is achieved by controlling environmental growth conditions and nutrient media composition. Long-term storage has been reported for in vitro cryopreservation of date palm cultures. Encapsulation of plant material in alginate beads has been suggested recently as a possible means of date palm germplasm exchange. Knowledge about germplasm diversity and genetic relationships are highly valuable tools in plant conservation strategies. In this regard, a number of molecular biology methods are currently available for analysis of genetic diversity in date palm genotypes. This chapter discusses the general issues and different aspects of plant biotechnology used for management and conservation of date palm cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Wahab RH, Zaghloul MS, Moustafa AA (2004) Conservation of medicinal plants in St. Catherine Protectorate, South Sinai. I. Evaluation of ecological status and human impact. Proceedings of first international conference on strategy of Egyptian herbaria, Giza, pp 231–251

    Google Scholar 

  • Alexander MP, Ganeshan S (1993) Pollen storage. In: Chadha KL, Pareek OP (eds.) Advances in horticulture. Vol. I – Fruit crops. Malhotra Publishing House, New Delhi, pp 481–496

    Google Scholar 

  • Al-Ghamdi AS (2001) Date palm (Phoenix dactylifera L.) germplasm bank in King Faisal University, Saudi Arabia. Survival and adaptability of tissue cultured plantlets. Acta Hort 560:241–244

    Google Scholar 

  • Al-Moshileh AM, Motawei MI, Al-Wasel A, Abdel-Latif T (2004) Identification of some date palm (Phoenix dactylifera L.) cultivars in Saudi Arabia using RAPD fingerprints. Agric Mar Sci 9:1–3

    Google Scholar 

  • Arora RK (1997) Biodiversity convention, global plan of action and the national programmes. In: Hossain MG, Arora RK, Mathur PN (eds.) Plant genetic resources, Bangladesh perspective, proceedings of a national workshop on plant genetic resources. Bangladesh Agricultural Research Council. BARC-IPGRI, Dhaka, pp 28–35

    Google Scholar 

  • Ashmore SE (1997) Status report on the development and application of in vitro techniques for the conservation of plant genetic resources. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Baaziz M, Saaidi M (1988) Preliminary identification of date palm cultivars by esterase isoenzymes and peroxidase activities. Can J Bot 66:89–93

    Article  CAS  Google Scholar 

  • Bagniol S, Engelmann F, Michaux FN (1992) Histocytolgical study of apices from in vitro plantlets of date palm (Phoenix dactylifera L.) during cryopreservation process. Cryo Lett 13:405–412

    Google Scholar 

  • Banerjee N, De Langhe E (1985) A tissue culture technique for rapid clonal propagation and storage under minimal growth conditions of Musa (banana and plantain). Plant Cell Rep 4:351–354

    Article  CAS  Google Scholar 

  • Barlow B, Tzotsos GT (1995) Biotechnology. In: Heywood VH, Gardner K (eds.) Global biodiversity assessment. Cambridge University Press, Cambridge, pp 671–710

    Google Scholar 

  • Barnabas B, Kovacs G (1997) Storage of pollen. In: Shivanna KR, Sawhney VK (eds.) Pollen biotechnology for crop production and improvement. Cambridge University Press, Cambridge, pp 293–314

    Chapter  Google Scholar 

  • Barreveld WH (1993) Date palm products. FAO Agricultural Services Bulletin No. 101. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Bekheet SA (2006) A synthetic seed method through encapsulation of in vitro proliferated bulblets of garlic (Allium sativum L). Arab J Biotechnol 9:415–426

    Google Scholar 

  • Bekheet SA, Taha HS, Saker MM (2001) In vitro long-term storage of date palm. Biol Plant 45:121–124

    Article  Google Scholar 

  • Bekheet SA, Taha HS, El-Bahr MK (2005) Preservation of date palm cultures using encapsulated somatic embryos. Arab J Biotechnol 8:319–328

    Google Scholar 

  • Bekheet SA, Taha HS, Solliman ME, Hassan NA (2007) Cryopreservation of date palm (Phoenix dactylifera L.) cultured in vitro. Acta Hort 736:283–291

    Google Scholar 

  • Ben-Abdalla A, Stiti K, Lepoivre P, Jardin PD (2000) Date palm (Phoenix dactylifera L.) cultivar identification using random amplified polymorphic DNA (RAPD). Cah Agric 9:103–107

    Google Scholar 

  • Bendiab K, Baaziz M, Brakez Z, Sedra H (1993) Correlation of isoenzyme polymorphism and Bayoud-diseases resistance in date palm cultivars and progeny. Euphy 65:23–32

    Article  Google Scholar 

  • Bendiab K, Baaziz M, Majourhat K (1998) Preliminary date palm cultivar composition of Moroccan palm groves as revealed by leaf isoenzyme phenotypes. Biochem Syst Ecol 26:71–82

    Article  CAS  Google Scholar 

  • Bennaceur M, Lanaud C, Chevalier MH, Bounagua N (1991) Genetic diversity of the date palm (Phoenix dactylifera L) from Algeria revealed by enzyme markers. Plant Breed 107:56–69

    Article  CAS  Google Scholar 

  • Bhat BV, Seetharam A (1993) Pollen storage and viability – an Indian perspective. In: Veeresh GK, Umashankar R, Ganeshaiah KN (eds.) Pollination in the tropics. Proceedings of the international symposium on pollination in tropics. IUSSI, GKVK, Bangalore, pp 335–355

    Google Scholar 

  • Blake J (1983) Tissue culture propagation of coconut, date, oil palm. In: Dodds JH (ed.) Tissue culture of trees. Croom-Helm, Ltd., Beckenham, pp 29–50

    Google Scholar 

  • Brar DS, Jain SM (1998) Somaclonal variation: mechanism and applications in crop improvement. In: Jain SM, Brar DS, Ahloowalia BS (eds.) Somaclonal variation and induced mutations in crop improvement. Kluwer, Dordrecht, pp 15–37

    Google Scholar 

  • Bretting PK, Widrlechner MP (1995) Genetic markers and plant genetic resource management. Plant Breed Rev 13:11–86

    Google Scholar 

  • Brown DCW, Leung DWM, Thorpe TA (1979) Osmotic requirements for shoot formation in tobacco callus. Physiol Plant 46:36–41

    Article  CAS  Google Scholar 

  • Cardy BJ, Kannenberg LW (1982) Allozymic variability among maize inbred l’mes and hybrid, application for cultivars identification. Crop Sci 22:1016–1020

    Article  Google Scholar 

  • Castillo B, Smith MA, Yadava UL (1998) Plant regeneration from encapsulated somatic embryos of Carica papaya L. Plant Cell Rep 17:172–176

    Article  CAS  Google Scholar 

  • Charoensub R, Phansiri S, Sakai A, Yongma-Nitchai W (1999) Cryopreservation of cassava in vitro-grown shoot tips cooled to –196° by vitrification. Cryo Lett 20:89–94

    Google Scholar 

  • Corbineau F, Engelmann F, Côme D (1990) Ethylene production as an indicator of chilling injury in oil palm (Elaeis guineensis Jacq.) somatic embryos. Plant Sci 71:29–34

    Article  CAS  Google Scholar 

  • Corniquel B, Mercier L (1994) Date palm (Phoenix dactylifera L.) cultivar identification by RFLP and RAPD. Plant Sci 101:163–172

    Article  CAS  Google Scholar 

  • Dale PJ (1980) A method for in vitro storage Lolium multiflorum Lam. Ann Bot 45:497–502

    Google Scholar 

  • Dussert S, Chabrillange N, Antony F et al (1997) Variability in storage response within a coffee (Coffea spp.) core collection under slow growth conditions. Plant Cell Rep 16:344–348

    CAS  Google Scholar 

  • Engelmann F (1990) Use of atmospheres with low oxygen contents for the storage of oil palm (Elaeis guineensis Jacq) somatic embryos cultures. C R Acad Sci Paris III 310:679–684

    Google Scholar 

  • Engelmann F (2000) Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F, Takagi H (eds.) Cryopreservation of tropical plant germplasm. Current research progress and application. IPGRI, Rome, pp 8–20

    Google Scholar 

  • FAO (2004) Food and Agriculture Organization statistical databases (FAOSTAT), 24 May, 2004. http://faostat.fao.org/

  • Finkle BJ, Ulrich JM, Rains DW et al (1979) Survival of alfalfa (Medicago sativa), rice (Oryza sativa) and date palm (Phoenix dactylifera L.) callus after liquid nitrogen freezing. Cryobiology 16:583

    Article  Google Scholar 

  • Fowke LC, Attree SM, Pomeroy MK (1994) Production of vigorous desiccation-tolerant white spruce (Picea glauca [Moench] Voss.) synthetic seeds in a bioreactor. Plant Cell Rep 13:601–606

    Article  Google Scholar 

  • Fujii J, Slade D, Aguirre-Rascon J, Redenbaugh K (1992) Field planting of alfalfa artificial seeds. In Vitro Cell Dev Biol Plant 28:73–80

    Google Scholar 

  • Galzy R, Compan D (1988) Growth and nutrition of grapevine during in vitro long-term storage. Plant Cell Tissue Org Cult 13:229–237

    Article  Google Scholar 

  • Ganapathi TR, Suprasanna P, Bapat VA, Rao PS (1992) Propagation of banana through encapsulated shoot tips. Plant Cell Rep 11:571–575

    Article  Google Scholar 

  • Hao YJ, Wen XP, Deng XX (2004) Genetic and epigenetic evaluation of citrus calluses recovered from slow growth cultures. J Plant Physiol 161:479–484

    Article  PubMed  CAS  Google Scholar 

  • Harding K (1991) Molecular stability of the ribosomal RNA genes in Solanum tuberosum plants recovered from slow growth and cryopreservation. Euphy 55:141–146

    Article  CAS  Google Scholar 

  • Harding K (1994) The methylation status of DNA derived from potato plants recovered from slow growth. Plant Cell Tissue Org Cult 37:31–38

    Article  CAS  Google Scholar 

  • Harding K (1999) Stability assessments of conserved plant germplasm. In: Benson EE (ed.) Plant conservation biotechnology. Taylor & Francis, London, pp 97–107

    Google Scholar 

  • Hirai D, Sakki A (1999) Cryopreservation of in vitro-grown meristems of potato (Solanum tuberosum L.) encapsulation-vitrification. Pot Res 42:153–160

    Article  Google Scholar 

  • Hussein F, El-Kholy MH, Abou-Sayed Ahmed TA (1993) Organic-chemical constituents of some Egyptian dry-date cultivars grown at Aswan. Zagazig J Agric Res 20:1313–1321

    Google Scholar 

  • Hvoslef-Eide AK (1992) Effect of pre-storage conditions on storage of in vitro cultures of Nephrolepis Exallata L. and Cordyline fruticosa L. Plant Cell Tissue Org Cult 28:167–174

    Article  Google Scholar 

  • Ibrahim IA, Gargas AA, Nasr ME et al (2006) Biotechnological studies on the production of somatic embryogenesis and synthetic seeds of date palm. Part I: Features leaves ultrastructural surface variations. Bull Fac Agric Cairo Univ 57:97–105

    Google Scholar 

  • Kartha KK (1981) Meristem culture and cryopreservation methods and applications. In: Thorpe TA (ed.) Plant tissue culture, methods and applications in agriculture. Academic, New York, pp 181–212

    Google Scholar 

  • Khalil SM, Cheah KT, Perez EA et al (2002) Regeneration of banana (Musa spp. AAB cv. Dwarf Brazilian) via secondary somatic embryogenesis. Plant Cell Rep 20:1128–1134

    Article  CAS  Google Scholar 

  • Kobayashi S, Sakai A, Oiyama I (1990) Cryopreservation in liquid nitrogen of cultured navel orange (Citrus sinensis Osb.) nucellar cells and subsequent plant regeneration. Plant Cell Tissue Org Cult 23:15–20

    Article  Google Scholar 

  • MacFarquhar N (2003) Forbidden fruit: Iraq dates hit by war and sanctions. Intl. Herald Trib 1 July, 2004. http: www.iht.com/article/83184.html

  • Mandal BB (1995) Methods of in vitro conservation: principles, prospects and constraints. In: Rana RS, Chandel KPS, Bhat SR et al (eds.) Plant germplasm conservation: biotechnological approaches. NBPGR, New Delhi, pp 83–87

    Google Scholar 

  • Mater AA (1986) In vitro propagation of Phoenix dactylifera L. Date Palm J 4:137–152

    Google Scholar 

  • Mater AA (1987) Production of cryogenic freezing of date palm germplasm and regeneration of plantlets from frozen material. Iraq J Agric Sci Zanco 5:35–49

    Google Scholar 

  • Messar EM (1996) Le secteur phoenicicole algérien: situation et perspectives à l’horizon 2010. Opt Médit A28:23–44

    Google Scholar 

  • Monette PL (1986) Cold storage of kiwi shoot tips in vitro. HortSci 21:1203–1205

    Google Scholar 

  • MyCock DJ, Wesley-Smith J, Berjak P (1995) Cryopreservation of somatic embryos of four species with and without cryoprotectant pre-treatment. Ann Bot 75:331–336

    Article  Google Scholar 

  • MyCock DJ, Berjak P, Pammenter NW, Vertucci CW (1997) Cryopreservation of somatic embryos of Phoenix dactylifera L. In: Ellis RH, Black M, Murdoch AL, Hong TD (eds.) Basic applied aspects of seed biology. Kluwer, Dordrecht, pp 75–82

    Google Scholar 

  • N´Nan O, Hocher V, Verdeil JL et al (2008) Cryopreservation by encapsulation-dehydration of plumules of coconut (Cocos nucifera L.). Cryo Lett 29:339–350

    Google Scholar 

  • Niino T, Sakai A, Enomoto S et al (1992) Cryopreservation of in vitro-grown shoot tips of mulberry by vitrification. Cryo Lett 13:303–312

    Google Scholar 

  • Nimo T, Sakai A, Yakuwa H, Nojin K (1992) Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrification. Plant Cell Tissue Org Cult 28:261–266

    Article  Google Scholar 

  • Orlikowska T (1992) Effect of in vitro storage at 4°C on survival and proliferation of two apple rootstocks. Plant Cell Tissue Org Cult 31:1–7

    Google Scholar 

  • Othmani A, Bayoudh C, Drira N et al (2009) Regeneration and molecular analysis of date palm (PhÅ“nix dactylifera L.) plantlets using RAPD markers. Afr J Biotechnol 8:813–820

    Google Scholar 

  • Pains B, Strosse H, Van den Hende S, Swennen R (2002) Sucrose preculture to simplify cryopreservation of banana meristem cultures. Cryo Lett 23:375–384

    Google Scholar 

  • Paul H, Daigny G, Sangwan-Norreel BS (2000) Cryopreservation of apple (Malus domestica Borkh.) shoot tips following encapsulation-vitrification. Plant Cell Rep 19:768–774

    Article  CAS  Google Scholar 

  • Rao NK (2004) Plant genetic resources: advancing conservation and use through biotechnology. Afr J Biotechnol 3:136–145

    Google Scholar 

  • Redenbaugh K (1993) Introduction. In: Redenbaugh K (ed.) Synthetic seeds: application of synthetic seeds to crop improvement. CRC Press, Boca Raton, pp 3–10

    Google Scholar 

  • Redenbaugh K, Paasch B, Nichol J et al (1986) Somatic seeds: encapsulation of asexual plant embryos. Biotechnology 4:797–801

    Article  Google Scholar 

  • Reed BM (1992) Cold storage of strawberries in vitro: a comparison of three storage systems. Fruit Var J 46:98–102

    Google Scholar 

  • Reed BM (2008) Plant cryopreservation: a practical guide. Springer, New York

    Book  Google Scholar 

  • Renau-Morata B, Arrillaga I, Segura J (2006) In vitro storage of cedar shoot culture under minimal growth conditions. Plant Cell Rep 25:636–642

    Article  PubMed  CAS  Google Scholar 

  • Rhouma A (1996) Le palmier dattier en Tunisie: un secteur en pleine expansion. Opt Médit A28:85–104

    Google Scholar 

  • Sakai A, Engelmann F (2007) Vitrification, encapsulation-vitrification and droplet-vitrification. Cryo Lett 28:151–172

    CAS  Google Scholar 

  • Salem A, Trifi M, Salhi-Hannachi A et al (2001) Genetic variability analysis of Tunisian date-palm (Phoenix dactylifera L.) cultivars. J Genet Breed 55:269–278

    CAS  Google Scholar 

  • Salman M, Al-Jibouri M, Al-Quadhy K, Omar S (1988) Isozyme and chromosomal analysis of tissue culture derived date palm. Date Palm J 6:401–411

    Google Scholar 

  • Sanada M, Sakamoto Y, Hayashi M et al (1993) Celery and lettuce. In: Redenbaugh K (ed.) Synseeds: applications of synthetic seeds to crop improvement. CRC Press, Boca Raton, pp 305–327

    Google Scholar 

  • Sarkar D, Naik PS (1998) Factors affecting minimal growth conservation potato microplants vitro. Euphy 102:275–280

    Article  Google Scholar 

  • Scocchi A, Faloci M, Medina R et al (2004) Plant recovery of cryopreserved apical meristem-tips of Melia azedarach L. using encapsulation/dehydration and assessment of their genetic stability. Euphy 135:29–38

    Article  CAS  Google Scholar 

  • Sedra H, Lashermes P, Trouslot P, Combes C et al (1998) Identification and genetic analysis of date palm (Phoenix dactylifera L.) varieties from Morocco using RAPD markers. Euphy 103:75–82

    Article  CAS  Google Scholar 

  • Sharma N, Chandel K (1992) Low temperature storage of Rauvolfia serpentine Benth ex Kurz: an endangered, endemic medicinal plant. Plant Cell Rep 11:200–203

    Article  Google Scholar 

  • Shibli RA, Shatnawi MA, Ajlouni MM et al (1999) Slow growth in vitro conservation of bitter almond (Amygdalus communis L.). Adv Hort Sci 13:133–134

    Google Scholar 

  • Taha HS, Bekheet SA, Saker MM (2001) Factors affecting in vitro multiplication of date palm. Biol Plant 44:431–433

    Article  CAS  Google Scholar 

  • Tisserat BH (1981) Date palm tissue culture. USDA, Oakland

    Google Scholar 

  • Tisserat BH (1984) Propagation of date palm by shoot tip cultures. HortSci 19:230–231

    CAS  Google Scholar 

  • Tisserat BH, Ulrich JM, Finkle BJ (1981) Cryogenic preservation and regeneration of date palm tissue. HortSci 16:47–48

    Google Scholar 

  • Tisserat BH, Gabr MF, Sabour MT (1985) Viability of cryogenically treated date palm pollen. Date Palm J 4:25–32

    Google Scholar 

  • Torres AM, Tisserat BH (1980) Leaf isozymes as genetic markers in date-palms. Am J Bot 67:162–167

    Article  CAS  Google Scholar 

  • Towill LE, Zaid A, Hughes HG (1989) Cryopreservation of date palm shoot tips. Abstract ISHS meeting (PS II), p 91

    Google Scholar 

  • Ulrich JM, Finkle BJ, Tisserat BH (1982) Effects of cryogenic treatment on plantlet production from frozen and unfrozen date palm callus. Plant Physiol 69:624–627

    Article  PubMed  CAS  Google Scholar 

  • Wang PJ, Charles A (1991) Micropropagation through meristem culture. In: Bajaj YPS (ed.) The biotechnology in agriculture and forestry: high-tech and propagation, vol 17. Springer-Verlag, Berlin/Heidelberg, pp 32–52

    Google Scholar 

  • Wang ZY, Legris G, Nagel J et al (1994) Cryopreservation of embryogenic cells suspensions in Festuca and Lolium species. Plant Sci 103:93–106

    Article  CAS  Google Scholar 

  • Wang Q, Gafny R, Sahar N et al (2002) Cryopreservation of grapevine (Vitis vinifera L.) embryogenic cell suspension by encapsulation-dehydration and subsequent plant regeneration. Plant Sci 162:551–558

    Article  CAS  Google Scholar 

  • Ward ACW, Benson EE, Blackhall NW et al (1993) Flow-cytometric assessment of ploidy stability in cryopreserved dihaploid Solanum tuberosum and wild Solanum species. Cryo Lett 14:145–152

    Google Scholar 

  • Withers LA (1980) The cryopreservation of higher plant tissue and cell cultures – an overview with some current observation and future thoughts. Cryo Lett 1:239–250

    Google Scholar 

  • Withers LA (1983) Germplasm storage in plant biotechnology. In: Mantell SH, Smith H (eds.) Plant biotechnology. Cambridge University Press, Cambridge, pp 187–218

    Google Scholar 

  • Withers LA (1991) Biotechnology and plant genetic resources conservation. In: Paroda RS, Arora RK (eds.) Plant genetic resources, conservation and management concepts and application. International Board for Plant Genetic Resources, New Delhi, pp 273–297

    Google Scholar 

  • Withers LA (1992) In vitro conservation. In: Hammerschlag F, Litz RE (eds.) Biotechnology of perennial fruit crops. CABI, Wallingford, pp 269–200

    Google Scholar 

  • Withers LA, Williams JT (1985) Research on the long-term storage and exchange of in vitro plant germplasm. In: Biotechnology in international agricultural research, proceeding inter-center seminar on international agricultural research centers (IARCs) and biotechnology. International Rice research Institute, Los Baños, 11–24 pp

    Google Scholar 

  • Yu-Jin H, Xiu-Xin D (2003) Genet stable regeneration apple plants slow growth. Plant Cell Tissue Org Cult 72:253–260

    Article  Google Scholar 

  • Zaid A, Tisserat B (1983) In vitro shoot tip differentiation in Phoenix dactylifera L. Date Palm J 2:163–183

    CAS  Google Scholar 

  • Zandvoort EA, Hulshof MJH, Staritsky G (1994) In vitro storage of Xanthosoma spp. Under minimal growth conditions. Plant Cell Tissue Org Cult 36:309–316

    Article  Google Scholar 

  • Zimmermann U (1978) Physics of turgor and osmo-regulation. Ann Rev Plant Physiol 29:121–148

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Bekheet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bekheet, S.A. (2011). In Vitro Conservation of Date Palm Germplasm. In: Jain, S., Al-Khayri, J., Johnson, D. (eds) Date Palm Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1318-5_17

Download citation

Publish with us

Policies and ethics