Skip to main content

Newer Indications and Challenges

  • Chapter
  • First Online:
ECMO-Extracorporeal Life Support in Adults

Abstract

Technological development of extracorporeal systems of the last 30 years led to extremely improved high-flow venoarterial or venovenous extracorporeal systems for cardiovascular support and refractory hypoxia and to less invasive low-flow systems for extracorporeal CO2 removal.

Oxygenation through modern polymethylpentene membrane lungs is nearly optimal: hemoglobin of blood exiting the membrane lungs is almost fully saturated, and oxygen partial pressure is close to the maximal theoretically achievable. On the contrary CO2 removal is less efficient, since only a small fraction of the total blood CO2 is present in the dissolved form, the only fraction which can be readily removed by the membrane lung. Promising technological developments, exploiting the bicarbonate ions, which represent almost 90 % of the total blood CO2 content, lead toward ultra low-flow CO2 removal systems.

Moreover, clinical and organizational improvements are foreseeable that might improve indications, management, and outcome for ECMO patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gattinoni L, Pesenti A, Kolobow T, Damia G (1983) A new look at therapy of the adult respiratory distress syndrome: motionless lungs. Int Anesthesiol Clin 21:97–117

    Article  CAS  PubMed  Google Scholar 

  2. Hester RL, Ashcraft D, Curry E, Bower J (1992) Non-invasive determination of recirculation in the patient on dialysis. ASAIO J 38:M190–M193

    Article  CAS  PubMed  Google Scholar 

  3. Lindsay RM, Bradfield E, Rothera C, Kianfar C, Malek P, Blake PG (1998) A comparison of methods for the measurement of hemodialysis access recirculation and access blood flow rate. ASAIO J 44:62–67

    Article  CAS  PubMed  Google Scholar 

  4. Clements D, Primmer J, Ryman P, Marr B, Searles B, Darling E (2008) Measurements of recirculation during neonatal veno-venous extracorporeal membrane oxygenation: clinical application of the ultrasound dilution technique. J Extra Corpor Technol 40:184–187

    PubMed  Google Scholar 

  5. Darling EM, Crowell T, Searles BE (2006) Use of dilutional ultrasound monitoring to detect changes in recirculation during venovenous extracorporeal membrane oxygenation in swine. ASAIO J 52:522–524

    CAS  PubMed  Google Scholar 

  6. Körver EP, Ganushchak YM, Simons AP, Donker DW, Maessen JG, Weerwind PW (2012) Quantification of recirculation as an adjuvant to transthoracic echocardiography for optimization of dual-lumen extracorporeal life support. Intensive Care Med 38:906–909

    Article  PubMed Central  PubMed  Google Scholar 

  7. Peek GJ, Killer HM, Reeves R, Sosnowski AW, Firmin RK (2002) Early experience with a polymethyl pentene oxygenator for adult extracorporeal life support. ASAIO J 48:480–482

    Article  CAS  PubMed  Google Scholar 

  8. Toomasian JM, Schreiner RJ, Meyer DE, Schmidt ME, Hagan SE, Griffith GW, Bartlett RH, Cook KE (2005) A polymethylpentene fiber gas exchanger for long-term extracorporeal life support. ASAIO J 51:390–397

    Article  CAS  PubMed  Google Scholar 

  9. Arlt M, Philipp A, Voelkel S, Camboni D, Rupprecht L, Graf BM, Schmid C, Hilker M (2011) Hand-held minimised extracorporeal membrane oxygenation: a new bridge to recovery in patients with out-of-centre cardiogenic shock. Eur J Cardiothorac Surg 40:689–694

    PubMed  Google Scholar 

  10. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  11. Patroniti N, Bellani G, Cortinovis B, Foti G, Maggioni E, Manfio A, Pesenti A (2010) Role of absolute lung volume to assess alveolar recruitment in acute respiratory distress syndrome patients. Crit Care Med 38:1300–1307

    PubMed  Google Scholar 

  12. Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, Matthay MA (2002) Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 346:1281–1286

    Article  PubMed  Google Scholar 

  13. Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, Gandini G, Herrmann P, Mascia L, Quintel M, Slutsky AS, Gattinoni L, Ranieri VM (2007) Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 175:160–166

    Article  CAS  PubMed  Google Scholar 

  14. Terragni PP, Del Sorbo L, Mascia L, Urbino R, Martin EL, Birocco A, Faggiano C, Quintel M, Gattinoni L, Ranieri VM (2009) Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology 111:826–835

    Article  PubMed  Google Scholar 

  15. Livigni S, Maio M, Ferretti E, Longobardo A, Potenza R, Rivalta L, Selvaggi P, Vergano M, Bertolini G (2006) Efficacy and safety of a low-flow veno-venous carbon dioxide removal device: results of an experimental study in adult sheep. Crit Care 10:R151

    Article  PubMed Central  PubMed  Google Scholar 

  16. Batchinsky AI, Jordan BS, Regn D, Necsoiu C, Federspiel WJ, Morris MJ, Cancio LC (2011) Respiratory dialysis: reduction in dependence on mechanical ventilation by venovenous extracorporeal CO2 removal. Crit Care Med 39:1382–1387

    Article  PubMed  Google Scholar 

  17. Kluge S, Braune SA, Engel M, Nierhaus A, Frings D, Ebelt H, Uhrig A, Metschke M, Wegscheider K, Suttorp N, Rousseau S (2012) Avoiding invasive mechanical ventilation by extracorporeal carbon dioxide removal in patients failing noninvasive ventilation. Intensive Care Med 38:1632–1639

    Article  PubMed  Google Scholar 

  18. Gille JP, Lautier A, Tousseul B (1992) EC CO2R: oxygenator or hemodialyzer? An in vitro study. Int J Artif Organs 15:229–233

    CAS  PubMed  Google Scholar 

  19. Snider MT, Chaudhari SN, Richard RB, Whitcomb DR, Russell GB (1987) Augmentation of CO2 transfer in membrane lungs by the infusion of a metabolizable organic acid. ASAIO Trans 33:345–351

    CAS  PubMed  Google Scholar 

  20. Nolte SH, Benfer RH, Grau J (1991) Extracorporeal CO2 removal with hemodialysis (ECBicCO2R): how to make up for the bicarbonate loss? Int J Artif Organs 14:759–764

    CAS  PubMed  Google Scholar 

  21. Nolte SH, Jonitz WJ, Grau J, Roth H, Assenbaum ER (1989) Hemodialysis for extracorporeal bicarbonate/CO2 removal (ECBicCO2R) and apneic oxygenation for respiratory failure in the newborn. Theory and preliminary results in animal experiments. ASAIO Trans 35:30–34

    CAS  PubMed  Google Scholar 

  22. Gille JP, Bauer P, Bollaert PE, Tousseul B, Kachani-Mansour R, Munsch L (1989) CO2 removal with hemodialysis and control of plasma oncotic pressure. ASAIO Trans 35:654–657

    Article  CAS  PubMed  Google Scholar 

  23. Gille JP, Saunier C, Schrijen F, Hartemann D, Tousseul B (1989) Metabolic CO2 removal by dialysis: THAM vs NaOH infusion. Int J Artif Organs 12:720–727

    CAS  PubMed  Google Scholar 

  24. Cressoni M, Zanella A, Epp M, Corti I, Patroniti N, Kolobow T, Pesenti A (2009) Decreasing pulmonary ventilation through bicarbonate ultrafiltration: an experimental study. Crit Care Med 37:2612–2618

    Article  CAS  PubMed  Google Scholar 

  25. Zanella A, Patroniti N, Isgrò S, Albertini M, Costanzi M, Pirrone F, Scaravilli V, Vergnano B, Pesenti A (2009) Blood acidification enhances carbon dioxide removal of membrane lung: an experimental study. Intensive Care Med 35:1484–1487

    Article  CAS  PubMed  Google Scholar 

  26. Zanella A, Mangili P, Redaelli S, Scaravilli V, Giani M, Ferlicca D, Scaccabarozzi D, Pirrone F, Albertini M, Patroniti N, Pesenti A (2014) Regional blood acidification enhances extracorporeal carbon dioxide removal: a 48-hour animal study. Anesthesiology. 120(2):416–424

    Google Scholar 

  27. Zanella A, Giani M, Redaelli S, Mangili P, Scaravilli V, Ormas V, Costanzi M, Albertini M, Bellani G, Patroniti N, Pesenti A (2013) Infusion of 2.5 meq/min of lactic acid minimally increases CO2 production compared to an isocaloric glucose infusion in healthy anesthetized, mechanically ventilated pigs. Crit Care 11;17(6):R268. [Epub ahead of print]

    Google Scholar 

  28. Zanella A, Mangili P, Giani M, Redaelli S, Scaravilli V, Castagna L, Sosio S, Pirrone F, Albertini M, Patroniti N, Pesenti A (2013) Extracorporeal carbon dioxide removal through ventilation of acidified dialysate: An experimental study. J Heart Lung Transplant. pii: S1053-2498(13)01560-X. doi: 10.1016/j.healun.2013.12.006 [Epub ahead of print]

    Google Scholar 

  29. Wearden PD, Federspiel WJ, Morley SW, Rosenberg M, Bieniek PD, Lund LW, Ochs BD (2012) Respiratory dialysis with an active-mixing extracorporeal carbon dioxide removal system in a chronic sheep study. Intensive Care Med 38:1705–1711

    Article  PubMed Central  PubMed  Google Scholar 

  30. Wang D, Lick SD, Campbell KM, Loran DB, Alpard SK, Zwischenberger JB, Chambers SD (2005) Development of ambulatory arterio-venous carbon dioxide removal (AVCO2R): the downsized gas exchanger prototype for ambulation removes enough CO2 with low blood resistance. ASAIO J 51:385–389

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Zanella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Giani, M., Zanella, A., Sangalli, F., Pesenti, A. (2014). Newer Indications and Challenges. In: Sangalli, F., Patroniti, N., Pesenti, A. (eds) ECMO-Extracorporeal Life Support in Adults. Springer, Milano. https://doi.org/10.1007/978-88-470-5427-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5427-1_40

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5426-4

  • Online ISBN: 978-88-470-5427-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics