Skip to main content

Central and Peripheral Control of Sweating Mechanisms: Modifications by Thermal Acclimatization and Physical Training

  • Chapter
Thermotherapy for Neoplasia, Inflammation, and Pain

Summary

Sweating is a heat loss response that is critical for improved physical performance and safety in extremely hot conditions. It is centrally regulated by the preoptic area and anterior hypothalamus and peripherally transmitted by sympathetic sudomotor innervation, with acetylcholine (ACh) as the primary neuroglandular transmitter. Modification of sweating activity through heat exposure or physical training is a physiological tactic for improved tolerance when individuals are challenged with exogenous or endogenous heat. A short-term heat challenge produces a lower resting and slower increase in body temperature as well as enhanced sweating response, while long-term heat exposure results in decreased sweat output. Cold acclimation results in reduced thermoneutral and skin temperatures, lowered cold sensation, and reduced metabolic heat production. Physical training induces higher sweat output by means of greater sweat output per activated sweat gland, a shorter lag phase for sweating, an increased number of activated sweat glands, and a higher rate of skin blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jessen C (1971) Spinal cord and hypothalamus as parallel core sensors of temperature in the dog. Int J Biometeorol 15: 146–150

    Article  PubMed  CAS  Google Scholar 

  2. Hammel HT (1975) Neurons and temperature regulation. In: Yamamoto WS, Brobeck JR (eds) Physiological regulation and control. Saunders, Philadelphia, p 71

    Google Scholar 

  3. Morimoto T (1990) Thermoregulation and body fluids: role of blood volume and central venous pressure. Jpn J Physiol 40: 165–179

    Article  PubMed  CAS  Google Scholar 

  4. Hori T (1991) An update on thermosensitive neurons in the brain: from cellular biology to thermal and non-thermal homeostatics functions. Jpn J Physiol 41: 1–22

    Article  PubMed  CAS  Google Scholar 

  5. Kuroshima A (1993) Brown adipose tissue thermogenesis as physiological strategy for adaptation. Jpn J Physiol 43: 117–139

    Article  PubMed  CAS  Google Scholar 

  6. Ogawa T, Sugenoya J (1993) Pulsatile sweating and sympathetic sudomotor activity. Jpn J Physiol 43: 275–189

    Article  PubMed  CAS  Google Scholar 

  7. Hori S (1995) Adaptation to heat. Jpn J Physiol 45: 921–946

    Article  PubMed  CAS  Google Scholar 

  8. Lenhardt R, Kurz A, Sessler DI (1996) Thermoregulation and hyperthermia. Acta Anaesthesiol Scand Suppl 109: 34–38

    PubMed  CAS  Google Scholar 

  9. Takamata A, Nagashima K, Nose H, Morimoto T (1997) Osmoregulatory inhibition of thermally induced cutaneous vasodilation in passively heated humans. Am J Physiol 273 (1 pt 2): R197 - R204

    Google Scholar 

  10. Doris PA, Baker MA (1982) Intracranial osmoreceptors control evaporation in the heat-stressed cat. Brain Res 239: 644–648

    Article  PubMed  CAS  Google Scholar 

  11. Baker MA, Doris PA (1982) Control of evaporative heat loss during changes in plasma osmolality. J Physiol (Lond) 328: 535–545

    CAS  Google Scholar 

  12. Morimoto T, Itoh T, Kakamata A (1998) Thermoregulation and body fluid in hot environment. Prog Brain Res 115: 499–508

    Article  PubMed  CAS  Google Scholar 

  13. Mack G, Nose H, Nadel ER (1988) Role of cardiopulmonary baroreflexes during dynamic exercise. J Appl Physiol 65: 1827–1832

    PubMed  CAS  Google Scholar 

  14. Dietz NM, Rivera JM, Warner DO, Joyner MJ (1994) Is nitric oxide involved in cutaneous vasodilation during body heating in humans? J Appl Physiol 76(5): 20472053

    Google Scholar 

  15. Key BJ, Wigfield CC (1994) The influence of the ventrolateral medulla on thermoregulatory circulations in the rat. J Auton Nery Syst 48 (1): 79–89

    Article  CAS  Google Scholar 

  16. O’Leary DS, Wang G (1994) Impaired thermoregulatory cutaneous vasodilation in spontaneously hypertensive rats. J Appl Physiol 77 (2): 692–696

    PubMed  Google Scholar 

  17. Krogstad AL, Elam M, Karlsson T, Wallin BG (1995) Arteriovenous anastomoses and the thermoregulatory shift between cutaneous vasoconstrictor and vasodilator reflexes. J Auton Nery Syst 53 (2–3): 215–222

    Article  CAS  Google Scholar 

  18. Clark WG, Lipton JM (1983) Brain and pituitary peptides in thermoregulation. Pharmacol Ther 22: 249297

    Google Scholar 

  19. Jansky L, Vybiral S, Moravec J, et al (1986) Neuropeptides and temperature regulation. J Therm Biol 11 (2): 79–83

    Article  CAS  Google Scholar 

  20. Babcock AM, Baker DA, Moody TW (1992) Bombesininduced hypothermia: a dose-response and receptor antagonist study. Pharmacol Biochem Behav 43 (3): 957–960

    Article  PubMed  CAS  Google Scholar 

  21. Barton C, Hawkins MF (1993) Bombesin-induced hypothermia in VMH-lesioned rats. Brain Res Bull 32 (6): 629–633

    Article  PubMed  CAS  Google Scholar 

  22. Kimura T, Yamamoto T, Ota K, et al (1993) Central effects of interleukin-1 on blood pressure, thermogenesis, and the release of vasopressin, ACTH, and atrial natriuretic peptide. Ann N Y Acad Sci 689: 330–345

    Google Scholar 

  23. Yamamoto T, Kimura T, Ota K, et al (1994) Effects of interleukin-1 beta on blood pressure, thermoregulation, and the release of vasopressin, ACTH and atrial natriuretic hormone. Tohoku J Exp Med 173(2): 231245

    Google Scholar 

  24. Barton C, York DA, Bray GA (1995) Bombesin-induced hypothermia in rats tested at normal ambient temperatures: contribution of the sympathetic nervous system. Brain Res Bull 37 (2): 163–168

    Article  PubMed  CAS  Google Scholar 

  25. Handler CM, Mondgock DJ, Zhao SF, et al (1995) Interaction between opioid agonists and neurotensin on thermoregulation in the rat. I. Body temperature. J Pharmacol Exp Ther 274 (1): 284–292

    PubMed  CAS  Google Scholar 

  26. Yamada M, Cho T, Coleman NJ (1995) Regulation of daily rhythm of body temperature by neurotensin receptor in rats. Res Commun Mol Pathol Pharmacol 87 (3): 323–332

    PubMed  CAS  Google Scholar 

  27. Benmoussa M, Chait A, Loric G, de Beaurepaire R (1996) Low doses of neurotensin in the preoptic area produce hyperthermia. Comparison with other brain sites and with neurotensin-induced analgesia. Brain Res Bull 39 (5): 275–279

    Article  PubMed  CAS  Google Scholar 

  28. Jansky L, Riedel W, Simon E, et al (1987) Effect of bombesin on thermoregulation of the rabbit. Pflugers Arch 409 (3): 318–322

    PubMed  CAS  Google Scholar 

  29. Keil R, Gerstberger R, Simon E (1994) Hypothalamic thermal stimulation modulates vasopressin release in hyperosmotically stimulated rabbits. Am J Physiol 267 (4 pt 2): R1089 - R1097

    PubMed  CAS  Google Scholar 

  30. Pierau FK, Sann H, Yakimova K, et al (1998) Plasticity of hypothalamic temperature-sensitive neurons. Prog Brain Res 115: 63–84

    Article  PubMed  CAS  Google Scholar 

  31. Roth J (1998) Immunological and neuroendocrine modulation of fever in stress. Prog Brain Res 115: 177–192

    Article  PubMed  CAS  Google Scholar 

  32. Roth J, Schulze K, Simon E, et al (1992) Alteration of endotoxin fever and release of arginine vasporessin by dehydration in the guinea pig. Neuroendocrinology 56: 680–686

    Article  PubMed  CAS  Google Scholar 

  33. Ohwatari N, Kosaka M (1988) Heat loss responses during local heating of brain with argon laser and influence of anesthesia on heat loss functions of the rabbit. In: Proceedings of the 4th annual meeting of Japanese Society of Hyperthermic Oncology, October 29–31, pp 189–190

    Google Scholar 

  34. Kurz A, Sessler DI, Schroeder M, et al (1993) Thermoregulatory response thresholds during spinal anesthesia. Anesth Analg 77 (4): 721–726

    Article  PubMed  CAS  Google Scholar 

  35. Matsukawa T, Sessler DI, Sessler AM, et al (1995) Heat flow and distribution during induction of general anesthesia. Anesthesiology 82 (3): 662–673

    Article  PubMed  CAS  Google Scholar 

  36. Hanagata K, Matsukawa T, Sessler DI, et al (1995) Isoflurane and sevoflurane produce a dose-dependent reduction in the shivering threshold in rabbits. Anesth Analg 81 (3): 581–584

    PubMed  CAS  Google Scholar 

  37. Ozaki M, Sessler DI, Matsukawa T, et al (1997) The threshold for thermoregulatory vasoconstriction during nitrous oxide/sevoflurane anesthesia is reduced in the elderly. Anesth Analg 84 (5): 1029–1033

    PubMed  CAS  Google Scholar 

  38. Sessler DI (1997) Perioperative thermoregulation and heat balance. Ann N Y Acad Sci 813: 757–777

    Article  PubMed  CAS  Google Scholar 

  39. Szmuk P, Ezri T, Sessler DI, et al (1997) Spinal anesthesia speeds active postoperative rewarming. Anesthesiology 87 (5): 1050–1054

    Article  PubMed  CAS  Google Scholar 

  40. MacKenzie MA, Schonbaum E, Hermus AR, et al (1995) Sudomotor function in human poikilothermia. Neurology 45: 1602–1607

    Article  PubMed  CAS  Google Scholar 

  41. Simon E, et al (1987) Glossary of terms for thermal physiology. Pflugers Arch Eur J Physiol 410: 567–587

    Article  Google Scholar 

  42. Kolka MA (1993) Heat acclimation. In: Macleod DAD (ed) Intermittent high intensity exercise: preparation stress and damage limitation. Chapman and Hall, London, pp 391–401

    Google Scholar 

  43. Nadel ER, Pandolf KB, Roberst MF, et al (1974) Mechanisms of thermal acclimation to heat and exercise. J Appl Physiol 12: 1–8

    Google Scholar 

  44. Matsumoto T, Kosaka M, Yamauchi M, et al (1991) Analysis of mechanism of heat acclimation: comparison of heat tolerance between Japanese and Thai subjects. Trop Med 33: 127–133

    Google Scholar 

  45. Matsumoto T, Kosaka M, Yamauchi M, et al (1993) Study on mechanism of heat acclimatization due to thermal sweating: comparison of heat tolerance between Japanese and Thai subjects. Trop Med 35: 123134

    Google Scholar 

  46. Matsumoto T, Taimura A, Yamauchi M, et al (1997) Long-term heat acclimatization in tropical inhabitants. In: Nielsen BJ, Nielsen R (eds) Thermal physiology. Krough Institute, Copenhagen, p 69

    Google Scholar 

  47. Lee J-B, Matsumoto T, Othman T, et al (1997) Suppression of sweat gland sensitivity to acetylcholine applied iontophoretically in tropical Africans compared to temperate Japanese. Trop Med 39 (3/4): 111–121

    Google Scholar 

  48. Mathew CB (1997) Heat acclimation in telemetry equipped rat. J Therm Biol 22 (4/5): 275–280

    Article  Google Scholar 

  49. Wilkerson WJ, Young RJ, Melius JM (1986) Investigation of a fatal heat stroke. Am Ind Hyg Assoc 47: A493 - A494

    CAS  Google Scholar 

  50. Wenzel HG (1970) Indoor climatic conditions: physiological aspects, evaluation and optimum level. Occupational Safety and Health series 21. International Labour Office, Geneva

    Google Scholar 

  51. Shido O, Nagasaka T (1990) Heat loss responses in rats acclimated to heat loaded intermittently. J Appl Physiol 68 (1): 66–70

    Article  PubMed  CAS  Google Scholar 

  52. Armstrong CG, Kenney WL (1993) Effects of age and acclimation on responses to passive heat exposure. J Appl Physiol 75 (5): 2162–2167

    PubMed  CAS  Google Scholar 

  53. Moran D, Shapiro Y, Meiri U, et al (1996) Heat acclimation: cardiovascular response to hot/dry and hot/wet heat loads in rats. J Basic Clin Physiol Pharmacol 7 (4): 375–387

    Article  PubMed  CAS  Google Scholar 

  54. Nielsen B, Strange S, Christensen NJ, et al (1997) Acute and adaptive responses in humans to exercise in a warm, humid environment. Pflugers Arch 434 (1): 4956

    Article  Google Scholar 

  55. Cheung SS, McLellan TM (1998) Heat acclimation, aerobic fitness, and hydration effects on tolerance during uncompensable heat stress. J Appl Physiol 84(5): 17311739

    Google Scholar 

  56. Marlin DJ, Scott CM, Schroter RC, et al (1996) Physiological responses in nonheat acclimated horses performing treadmill exercise in cool (20 degrees C/40% RH), hot dry (30 degrees C/40% RH) and hot humid (30 degrees C/80% RH) conditions. Equine Vet J Suppl 22: 70–84

    PubMed  Google Scholar 

  57. Matsumoto T, Kosaka M, Saito M, et al (1995) A field study of telemetry-recording of the body temperature in wild Mongolian pikas. Trop Med 37 (3): 93–98

    Google Scholar 

  58. Cotter JD, Patterson MJ, Taylor NA (1997) Sweat distribution before and after repeated heat exposure. Eur J Appl Physiol 76 (2): 181–186

    Article  CAS  Google Scholar 

  59. Caputa M, Demicka A (1995) Warm rearing modifies temperature regulation in rats. J Physiol Pharmacol 46 (2): 195–203

    PubMed  CAS  Google Scholar 

  60. Tzschentke B, Nichelmann M (1997) Influence of prenatal and postnatal acclimation on nervous and peripheral thermoregulation. Ann N Y Acad Sci 813: 87–94

    Article  PubMed  CAS  Google Scholar 

  61. Fujiwara M, Ohwatari N, Tsuchiya K, et al (1986) Studies on functional modifications of thermoregulatory mechanisms in heat-acclimated rabbits. Trop Med 28 (4): 301–312

    Google Scholar 

  62. Bruck K (1981) Basic mechanisms in longtime thermal adaptation. In: Szelenyi Z, Szekely M (eds) Advances in physiological sciences. Contributions to thermal physiology, vol 32. Pergamon, Oxford, pp 263–273

    Google Scholar 

  63. Bruck K, Zeisberger E (1987) Adaptive changes in thermoregulation and their neuropharmacological basis. Pharmacol Ther 35: 163–215

    Article  PubMed  CAS  Google Scholar 

  64. Bruck K (1990) Adaptive modification of temperature regulation. In: Bligh J, Voigt K (eds) Thermoreception and temperature regulation. Springer, Berlin, pp 209223

    Google Scholar 

  65. Kosaka M (1992) The concept of biometeorology: strategy on how to adapt in hot and cold environment. Jpn J Biometeorol 29: 253–255

    Google Scholar 

  66. Epstein Y (1990) Heat tolerance: predisposing factor or residual injury? Med Sci Sports Exercise 22: 29–35

    CAS  Google Scholar 

  67. McArdie WD, Katch FI, Katch VL (1996) Exercise performance and environmental stress. In: Balado D (ed) Exercise physiology. Energy, nutrition and human performance. Williams and Wilkins, Baltimore, pp 511513

    Google Scholar 

  68. Wyndham CH, Benade AJA, Williams CG, et al (1968) Changes in central circulation and body fluid space during acclimatization in the heat. J Appl Physiol 25: 586–593

    PubMed  CAS  Google Scholar 

  69. Senay LC Jr (1970) Movemnt of water, protein and crytalloids between vascular and extravascular compartments in heat-exposed men during dehydration and following limited relief of dehydration. J Physiol (Lond) 210: 617–635

    CAS  Google Scholar 

  70. Morimoto T, Shiraki K, Miki K, et al (1979) Effect of exercise and thermal stress on subcutaneous protein transport. Jap J Physiol 31: 869–878

    Article  Google Scholar 

  71. Rowell LB (1974) Human cardiovascular adjustment to exercise and thermal stress. Physiol Rev 54: 75–159

    PubMed  CAS  Google Scholar 

  72. Hales JRS, Dampney RAL (1975) The distribution of cardiac output in the dog during heat stress. J Therm Biol 1: 29–34

    Article  Google Scholar 

  73. Morimoto T, Miki K, Nose H (1988) Heat-load, blood volume and circulatory response. In: Sugahara T, Saito M (eds) Hyperthermic oncology. Proceedings of the 5th international symposium on hyperthermic oncology, Kyoto, pp 326–329

    Google Scholar 

  74. Aoki K, Kondo N, Shibasaki M, et al (1997) Circadian variation of sweating responses to passive heat stress. Acta Physiol Scand 161: 397–402

    Article  PubMed  CAS  Google Scholar 

  75. Baum E, Bruck K, Schwennicke HP (1976) Adaptive modifications in the thermoregulatory system in long-distance runners. J Appl Physiol 40: 401 110

    Google Scholar 

  76. Budd GM, Brotherhood JR, Beasley FA, et al (1993) Effects of acclimatization to cold baths on men’s responses to whole-body cooling in air. Eur J Appl Physiol 67 (5): 438–449

    Article  CAS  Google Scholar 

  77. Jansky L, Janakova H, Ulicny B, et al (1996) Changes in thermal homeostasis in humans due to repeated cold water immersions. Pflugers Arch 432 (3): 368–372

    Article  PubMed  CAS  Google Scholar 

  78. Silami-Garcia E, Haymes EM (1989) Effects of repeated short-term cold exposures on cold induced thermogenesis of women. Int J Biometeorol 33 (4): 222–226

    Article  PubMed  CAS  Google Scholar 

  79. Leblanc J (1988) Factors affecting cold acclimation and thermogenesis in man. Med Sci Sports Exercise 20 (5 suppl): S193–5196

    CAS  Google Scholar 

  80. Ellison GT, Skinner JD, Haim A (1992) The relative importance of photoperiod and temperature as cues for seasonal acclimation of thermoregulation in pouched mice (Saccostomus campestris: Cricetidae) from southern Africa. J Comp Physiol B 162 (8): 740–746

    Article  PubMed  CAS  Google Scholar 

  81. Shefer VI, Talan MI (1997) Change in heat loss as a part of adaptation to repeated cold exposures in adult and aged male C57BL/6J mice. Exp Gerontol 32 (3): 325–332

    Article  PubMed  CAS  Google Scholar 

  82. Matsumoto T, Kosaka M, Saito M, et al (1995) A field study of telemetry-recording of the body temperature in wild Mongolian pikas. Trop Med 37 (3): 93–98

    Google Scholar 

  83. Kosaka M, Ohwatari N, Iwamoto J, et al (1985) Studies on temperature regulation of pika (Ochotona rufescens rufescens); an old fashioned rabbit. Trop Med 27 (4): 289–294

    Google Scholar 

  84. Yang G-J, Matusmoto T, Kosaka M, et al (1988) Poor heat loss ability of pika (white rabbit). Trop Med 30 (1): 45–48

    Google Scholar 

  85. Yang G-J (1990) Physiological characteristics of pika (Ochotona rufescens rufescens) as a weak heat tolerant animal. Trop Med 32 (4): 129–140

    Google Scholar 

  86. Matsumoto T, Yang G-J, Kosaka M, et al (1992) Weak heat tolerance of pika (Ochotona rufescens rufescens): study of thermal salivation. Jpn J Trop Med Hyg 20 (1): 105–106

    Google Scholar 

  87. Torii M, Yamasaki M, Sasaki T (1996) Effect of pre-warming in the cold season on thermoregulatory responses during exercise. Br J Sports Med 30(2): 102111

    Google Scholar 

  88. Torii M, Nakayama H (1993) Disappearance of seasonal variation of sweating responses in exercising man: effect of pre-heating in cold season. J Hum Ergol (Tokyo) 22 (1): 11–20

    CAS  Google Scholar 

  89. Therminarias A (1992) Acute exposure to cold air and metabolic responses to exercise. Int J Sports Med 13 (suppl 1): S187 - S190

    Article  PubMed  Google Scholar 

  90. Talan MI, Kirov SA, Kosheleva NA (1996) Nonshivering thermogenesis in adult and aged C57BL/6J mice housed at 22°C and at 29°C. Exp Gerontol 31(6): 687698

    Google Scholar 

  91. Kosaka M, Ohwatari N, Matsumoto T (1988) Central and peripheral mechanisms of thermal acclimation. In: Hyperthermic oncology, proceedings of the 5th annual international symposium on hyperthermic oncology, 29 August-3 September, Kyoto, Japan, pp 330–333

    Google Scholar 

  92. Yamauchi M, Matsumoto K, Ohwatari N, et al (1997) Sweating economy by graded control in well-trained athlets. Eur J Physiol 433: 675–678

    Article  CAS  Google Scholar 

  93. Geor RJ, McCutcheon LT (1998) Thermoregulatory adaptations associated with training and heat acclimation. Vet Clin North Am Equine Pract 14 (1): 97–120

    PubMed  CAS  Google Scholar 

  94. Kubica R, Tyka A, Zuchowicz A, et al (1996) Human acclimation to work in warm and humid environments. J Physiol Pharmacol 47 (3): 515–524

    PubMed  CAS  Google Scholar 

  95. Johnson JM (1992) Exercise and the cutaneous circulation. Exercise Sport Sci Rev 20: 59–97

    Article  CAS  Google Scholar 

  96. Kellogg DL Jr, Johnson JM, Kenney WL, et al (1993) Mechanisms of control of skin blood flow during prolonged exercise in humans. Am J Physiol 265 (2 pt 2): H562 - H568

    PubMed  Google Scholar 

  97. Kondo N, Nakadome M, Zhang K, et al (1997) The effect of change in skin temperature due to evaporative cooling on sweating response during exercise. Int J Biometeorol 40 (2): 99–102

    Article  PubMed  CAS  Google Scholar 

  98. Yamazaki F, Fujii N, Sone R, et al (1994) Mechanisms of potentiation in sweating induced by long-term physical training. Eur J Appl Physiol 69 (3): 228–232

    Article  CAS  Google Scholar 

  99. Sugenoya J, Ogawa T, Imai K, et al (1995) Cutaneous vasodilatation responses synchronize with sweat expulsions. Eur J Appl Occup Physiol 71: 33–40

    Article  CAS  Google Scholar 

  100. Gisolfi CV, Wenger CB (1984) Temperature regulation during exercise: old concepts, new ideas. Exercise Sport Sci Rev 12: 339–372

    Article  CAS  Google Scholar 

  101. Taylor NA (1986) Eccrine sweat glands. Adaptations to physical training and heat acclimation. Sports Med 3 (6): 387–397

    Article  PubMed  CAS  Google Scholar 

  102. Senay LC Jr (1979) Temperature regulation and hypo-hydration: a singular view. J Appl Physiol 47 (1): 1–7

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Japan

About this chapter

Cite this chapter

Kosaka, M. et al. (2001). Central and Peripheral Control of Sweating Mechanisms: Modifications by Thermal Acclimatization and Physical Training. In: Kosaka, M., Sugahara, T., Schmidt, K.L., Simon, E. (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67035-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67035-3_11

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67037-7

  • Online ISBN: 978-4-431-67035-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics