Skip to main content

Oxygen Precipitation in Silicon

  • Chapter
  • First Online:
Defects and Impurities in Silicon Materials

Part of the book series: Lecture Notes in Physics ((LNP,volume 916))

Abstract

This chapter starts with the basic features of interstitial oxygen which are crucial for further considerations. Nucleation and growth of oxygen precipitates are described from the viewpoint of classical nucleation theory. The initial states of oxygen precipitation as suggested by ab initio calculation are also shown. Results about the impact of intrinsic point defects, doping, and co-doping on oxygen precipitation are presented. The most important methods for detection and characterization of oxygen precipitates with their possibilities and limitations are comprehensively described. A second focus of this chapter is directed towards the impact of grown-in oxygen precipitate nuclei in silicon wafers on creation of high quality defect denuded zones and oxygen precipitation during device processing. Conventional and modern methods of thermal processing and their impact on oxygen precipitation are discussed. Methods to determine the getter efficiency of oxygen precipitates and their results are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hölzl, R., Huber, A., Fabry, L., Range, K.-J., Blietz, M.: Integrity of ultrathin gate oxides with different oxide thickness, substrate wafers and metallic contaminations. Appl. Phys. A: Mater. Sci. Process. 72, 351 (2001)

    Google Scholar 

  2. Lawrence, J.E., Huff, H.R.: Silicon material properties for VLSI circuitry. In: Einspruch, N.G. (ed.) VLSI Electronics: Microstructure Science, vol. 5, pp. 51–102. Academic, New York (1982)

    Google Scholar 

  3. Tsuya, T.: Oxygen effect on electronic device performance. In: Shimura, F. (ed.) Semiconductors and Semimetals, vol. 42, pp. 619–667. Academic, New York (1994)

    Google Scholar 

  4. Shimura, F.: Oxygen in silicon. In: Shimura, F. (ed.) Semiconductors and Semimetals, vol. 42. Academic, San Diego (1994)

    Google Scholar 

  5. Mikkelsen Jr., J.C.: The diffusivity and solubility of oxygen in silicon. Mater. Res. Soc. Symp. Proc. 59, 19 (1986)

    Google Scholar 

  6. Frewen, T.A., Kapur, S.S., Häckl, W., von Ammon, W., Sinno, T.: A microscopically accurate continuum model for void formation during semiconductor silicon processing. J. Cryst. Growth 279, 258 (2005)

    Google Scholar 

  7. Ǻberg, D., Svensson, B.G., Hallberg, T., Lindström, J.L.: Kinetic study of oxygen dimer and thermal donor formation in silicon. Phys. Rev. B 58, 12944 (1998)

    Google Scholar 

  8. Ramamoorthy, M., Pantelides, S.T.: Enhanced modes of oxygen diffusion in silicon. Solid State Commun. 106, 243 (1998)

    Google Scholar 

  9. Snyder, L.C., Corbett, J.W., Deak, P., Wu, R.: On the diffusion of oxygen dimer in a silicon crystal. Mat. Res. Soc. Proc. 104, 179 (1987)

    Google Scholar 

  10. Lee, S.-T., Fellinger, P., Chen, S.: Enhanced and wafer-dependent oxygen diffusion in CZ-Si at 500–700 C. J. Appl. Phys. 63, 1924 (1988)

    Google Scholar 

  11. McQuaid, S.A., Johnson, B.K., Gambaro, D., Falster, R., Ashwin, M.J., Tucker, J.H.: The conversion of isolated oxygen atoms to a fast diffusing species in Czochralski silicon at low temperatures. J. Appl. Phys. 86, 1878 (1999)

    Google Scholar 

  12. Takeno, H., Hayamizu, Y., Miki, K.: Diffusivity of oxygen in Czochralski silicon at 400–750 C. J. Appl. Phys. 84, 3113 (1998)

    Google Scholar 

  13. Senkader, S., Wilshaw, P.R., Falster, R.J.: Oxygen-dislocation interactions in silicon at temperatures below 700 C: dislocation locking and oxygen diffusion. J. Appl. Phys. 89, 4803 (2001)

    Google Scholar 

  14. Stavola, M., Patel, J.R., Kimerling, L.C., Freeland, P.E.: Diffusivity of oxygen in silicon at the donor formation temperature. Appl. Phys. Lett. 42, 73 (1983)

    Google Scholar 

  15. Kissinger, G., Dabrowski, J., Sattler, A., Müller, T., von Ammon, W.: Two paths of oxide precipitate nucleation in silicon. Solid State Phenom. 131–133, 293 (2008)

    Google Scholar 

  16. Baghdadi, A., Bullis, W.M., Croarkin, M.C., Yue-zhen Li, Scace, R.I., Series, R.W., Stallhofer, P., Watanabe, M.: Interlaboratory determination of the calibration factor for the measurement of interstitial oxygen content if silicon by infrared absorption. J. Electrochem. Soc. 136, 2015 (1989)

    ADS  Google Scholar 

  17. Vanhellemont, J., Claeys, C.: A theoretical study of the critical radius of precipitates and its application to silicon oxide in silicon. J. Appl. Phys. 62, 3960 (1987), Erratum J. Appl. Phys. 71, 1073 (1992)

    Google Scholar 

  18. Voronkov, V.V., Falster, R.: Nucleation of oxide precipitates in vacancy-containing silicon. J. Appl. Phys. 91, 5802 (2002)

    Google Scholar 

  19. Vanhellemont, J.: Diffusion limited oxygen precipitation in silicon: precipitate growth kinetics and phase formation. J. Appl. Phys. 78, 4297 (1995)

    Google Scholar 

  20. Nabarro, F.R.N.: The strain produced by precipitation in alloys. Proc. Roy. Soc. A 175, 519 (1940)

    Google Scholar 

  21. Zschorsch, M., Hölzl, R., Rüfer, H., Möller, H.J., von Ammon, W.: Optimized parameters for modeling oxygen nucleation in silicon. Solid State Phenom. 95–96, 71 (2004)

    Google Scholar 

  22. Wada, K., Inoue, N.: Thermal double donors in silicon. Electrochem. Soc. Proc. 86–4, 778 (1986)

    Google Scholar 

  23. Becker, R., Döring, W.: Kinetische Behandlung der Keimbildung in übersättigten Dämpfen (German). Ann. Phys. 416, 719 (1935)

    Google Scholar 

  24. Hu, S.M.: Growth law for disk precipitates, and oxygen precipitation in silicon. Appl. Phys. Lett. 48, 115 (1986)

    Google Scholar 

  25. Wortman, J.J., Evans, R.A.: Young's modulus, shear modulus, and Poisson's ratio in silicon and germanium. J. Appl. Phys. 36, 153 (1965)

    Google Scholar 

  26. Kissinger, G., Dabrowski, J.: Oxide precipitation via coherent seed-oxide phases. J. Electrochem. Soc. 155, H448 (2008)

    Google Scholar 

  27. Kroupa, F.: Circular edge dislocation loop. Czechoslovak J. Phys. B 10, 284 (1960)

    Google Scholar 

  28. Porter, D.A., Easterling, K.E.: Phase Transformations in Metals, 2nd edn, pp. 143–155. Nelson Thornes Ltd, Cheltenham (2001)

    Google Scholar 

  29. Bergholz, W.: Grown-in and process-induced defects. Semiconductors and semimetals. Oxygen in Silicon. 42, 513 (1994)

    Google Scholar 

  30. Bergholz, W.: Grown-in and process-induced defects. In: Shimura, F. (ed.) Semiconductors and Semimetals, vol. 42, pp. 513–575. Academic, New York (1994)

    Google Scholar 

  31. Kissinger, G., Dabrowski, J., Kot, D., Akhmetov, V., Sattler, A., Von Ammon, W.: Modeling the early stages of oxygen agglomeration. J. Electrochem. Soc. 158, H343 (2011)

    Google Scholar 

  32. Torres, V.J.B., Coutinho, J., Jones, R., Barroso, M., Öberg, S., Briddon, P.R.: Early SiO2 precipitates in Si: vacancy-oxygen versus interstitial-oxygen clusters. Phys. B 376–377, 109 (2006)

    Google Scholar 

  33. Sueoka, K.: Oxygen precipitation in lightly and heavily doped Czochralski silicon oxygen, nitrogen and hydrogen in silicon. ECS Trans. 3(4), 71 (2006)

    Google Scholar 

  34. Pesola, M., Von Boehm, J., Mattila, T., Nieminen, R.M.: Computational study of interstitial oxygen and vacancy-oxygen complexes in silicon. Phys. Rev. B 60, 11449 (1999)

    Google Scholar 

  35. Casali, R.A., Rücker, H., Methfessel, M.: Interaction of vacancies with interstitial oxygen in silicon. Appl. Phys. Lett. 78, 913 (2001)

    Google Scholar 

  36. Akhmetov, V., Kissinger, G., von Ammon, W.: Interaction of oxygen with thermally induced vacancies in Czochralski silicon. Appl. Phys. Lett. 94, 092105 (2009)

    Google Scholar 

  37. Kissinger, G., Dabrowski, J., Sattler, A., Seuring, C., Müller, T., Richter, H., von Ammon, W.: Analytical modeling of the interaction of vacancies and oxygen for oxide precipitation in RTA treated silicon wafers. J. Electrochem. Soc. 154, H454 (2007)

    Google Scholar 

  38. Kissinger, G., Sattler, A., Dabrowski, J., von Ammon, W.: Verification of a method to detect grown-in oxide precipitate nuclei in Czochralski silicon. ECS Trans. 11(3), 161 (2007)

    Google Scholar 

  39. Quemener, V., Raeissi, B., Herklotz, F., Murin, L.I., Monakhov, E.V., Svensson, B.G.: Kinetics study of vacancy-oxygen-related defects in monocrystalline solar silicon. Phys. Stat. Sol. B 251, 2197 (2014)

    Google Scholar 

  40. Swaroop, R., Kim, N., Lin, W., Bullis, M., Shive, L., Rice, A., Castel, E., Christ, M.: Testing for oxygen precipitation in silicon wafers. Solid State Technol. 3, 85–89 (1987)

    Google Scholar 

  41. Falster, R., Cornara, M., Gambaro, D., Olmo, M., Pagani, M.: Effect of high temperature pre-anneal on oxygen precipitates nucleation kinetics in Si. Solid State Phenom. 57–58, 123 (1997)

    Google Scholar 

  42. Kissinger, G., Gräf, D., Lambert, U., Richter, H.: A method for studying the grown-in defect density spectra in Czochralski silicon wafers. J. Electrochem. Soc. 144, 1447 (1997)

    Google Scholar 

  43. Falster, R., Pagani, M., Gambaro, D., Cornara, M., Olmo, M., Ferrero, G., Pichler, P., Jacob, M.: Vacancy-assisted oxygen precipitation phenomena in Si. Solid State Phenom. 57–58, 129 (1997)

    Google Scholar 

  44. Kelton, K.F., Falster, R., Gambaro, D., Olmo, M., Cornara, M., Wei, P.F.: Oxygen precipitation in silicon: experimental studies and theoretical investigations within the classical theory of nucleation. J. Appl. Phys. 85, 8097 (1999)

    Google Scholar 

  45. Kissinger, G., Kot, D., Dabrowski, J., Akhmetov, V., Sattler, A., von Ammon, W.: Analysis of the nucleation kinetics of oxide precipitates in Czochralski silicon. ECS Trans. 16(6), 97 (2008)

    Google Scholar 

  46. Wei, P.F., Kelton, K.F., Falster, R.: Coupled-flux nucleation modeling of oxygen precipitation in silicon. J. Appl. Phys. 88, 5062 (2000)

    Google Scholar 

  47. Esfandyari, J., Vanhellemont, J., Obermeier, G.: Computer simulation of oxygen precipitation by considering a temperature dependent interfacial energy. Electrochem. Soc. Proc. 99–1, 437 (1999)

    Google Scholar 

  48. Schrems, M.: Simulation of oxygen precipitation. In: Shimura, F. (ed.) Semiconductors and Semimetals, vol. 42, pp. 391–447. Academic, New York (1994)

    Google Scholar 

  49. Trzynadlowski, B.C., Dunham, S.T.: A reduced moment-based model for oxygen precipitation in silicon. J. Appl. Phys. 114, 243508 (2013)

    Google Scholar 

  50. Senkader, S., Hobler, G., Schmeiser, C.: Determination of the oxide-precipitate-silicon-matrix interface energy by considering the change of precipitate morphology. Appl. Phys. Lett. 69, 2202 (1996)

    Google Scholar 

  51. Kot, D., Kissinger, G., Schubert, M.A., Sattler, A.: Morphology of oxygen precipitates in RTA pre-treated Czochralski silicon wafers investigated by FTIR spectroscopy and STEM. ECS J. Solid State Sci. Technol. 3(11), P370 (2014)

    Google Scholar 

  52. Aoki, S.: Morphology of oxide precipitates in silicon crystals. Mater. Trans. JIM 34, 746 (1993)

    Google Scholar 

  53. Fujimori, H.: Dependence on morphology of oxygen precipitates upon oxygen supersaturation in Czochralski silicon crystals. J. Electrochem. Soc. 144, 3180 (1997)

    Google Scholar 

  54. Wang, Z., Brown, R.A.: Simulation of oxide formation and point defect dynamics in silicon: the role of oxide morphology. In: Claeys, C.L., Watanabe, M., Rai-Choudhury, P., Stallhofer, P. (eds.) Proceedings semiconductor silicon 2002, vol. 2002-20, p. 49. The Electrochemical Society, Pennington (2002)

    Google Scholar 

  55. Kolbesen, B.O.: Defect delineation in silicon materials by chemical etching techniques. In: Kissinger, G., Pizzini, S. (eds.) Silicon, Germanium and Their Alloys, Growth, Defects, Impurities, and Nanocrystals, pp. 289–322. CRC Press, Boca Raton/London/New York (2015)

    Google Scholar 

  56. Kulkarni, M.S., Libbert, J., Keltner, S., Mulestagno, L.: A theoretical and experimental analysis of macrodecoration of defects in monocrystalline silicon. J. Electrochem. Soc. 149, G153 (2002)

    Google Scholar 

  57. Kolbesen, B.O., Possner, D., Mähliß, J.: Delineation of crystalline defects in semiconductor substrates and thin films by chemical etching techniques. ECS Trans. 11, 195–206 (2007)

    Google Scholar 

  58. Secco d’Aragona, F.: Dislocation etch for (100) planes in silicon. J. Electrochem. Soc. 119, 948 (1972)

    Google Scholar 

  59. Wright Jenkins, M.: A new preferential etch for defects in silicon crystals. J. Electrochem. Soc. 124, 757 (1977)

    Google Scholar 

  60. Yang, K.H.: An etch for delineation of defects in silicon. J. Electrochem. Soc. 131, 1140 (1984)

    ADS  Google Scholar 

  61. Sirtl, E., Adler, A.: Z. f. Metallkunde 52, 529 (1961)

    Google Scholar 

  62. Schimmel, D.: Defect etch for <100> silicon evaluation. J. Electrochem. Soc. 126, 479 (1979)

    Google Scholar 

  63. Chandler, T.C.: MEMC etch—A chromium trioxide-free etchant for delineating dislocations and slip in silicon. J. Electrochem. Soc. 137, 944 (1990)

    Google Scholar 

  64. JEITA EM-3603 E 3.0

    Google Scholar 

  65. Saito, Y., Matsushita, Y.: European Patent EP 0281115B1, 20 Sept 1994

    Google Scholar 

  66. Possner, D., Kolbesen, B.O., Cerva, H., Klüppel, V.: Organic Peracid Etches: a new class of chromium free etch solutions for the delineation of defects in different semiconducting materials. ECS Trans. 10(1), 21 (2007)

    Google Scholar 

  67. Abbadie, A., Bedell, S.W., Hartmann, J.M., Sadana, D.K., Brunier, F., Figuet, C., Cayrefourcq, I.: Study of HCl and secco defect etching for characterization of thick sSOI. J. Electrochem. Soc. 154(8), H713 (2007)

    Google Scholar 

  68. Bogenschütz, A.F.: Ätzpraxis für Halbleiter. Hanser, Munich (1967)

    Google Scholar 

  69. Rozgonyi, G.A.: In: Mahajan, S. (ed.) Encyclopedia of Materials: Science and Technology, pp. 8524–8533. Elsevier Science Ltd, Amsterdam (2001)

    Google Scholar 

  70. Furukawa, J., Furuya, H.: Annealing behavior of a light scattering tomography detecting defect near the surface of Si wafers. Jpn. J. Appl. Phys. 34, L156 (1995)

    Google Scholar 

  71. Moriya, K., Ogawa, T.: Observation of lattice defects in GaAs and heat-treated Si crystals by infrared light scattering tomography. Jpn. J. Appl. Phys. 22, L207 (1983)

    Google Scholar 

  72. Moriya, K., Kashima, K., Takasu, S.: Development of a bulk microdefect analyzer for Si wafers. J. Appl. Phys. 66, 5267 (1989)

    Google Scholar 

  73. Ogawa, T.: Dislocation lines in indium-doped GaAs crystals observed by infrared light scattering tomography of about 1 µm wavelength radiation. J. Cryst. Growth 88, 332 (1988)

    Google Scholar 

  74. Taijing, L., Toyoda, K., Nango, N., Ogawa, T.: Observation of microdefects and microprecipitates in Si crystals by IR scattering tomography. J. Cryst. Growth 108, 482 (1991)

    Google Scholar 

  75. Kissinger, G., Vanhellemont, J., Claeys, C., Richter, H.: Observation of stacking faults and prismatic punching systems in silicon by light scattering tomography. J. Cryst. Growth 158, 191 (1996)

    Google Scholar 

  76. Borghesi, A., Sassela, A., Geranzani, P., Porrini, M., Pivac, B.: Infrared characterization of oxygen precipitates in silicon wafers with different concentrations of interstitial oxygen. Mater. Sci. Eng. B 73, 145 (2000)

    Google Scholar 

  77. Hallberg, T., Lindström, J.L.: Enhanced oxygen precipitation in electron irradiated silicon. J. Appl. Phys. 72, 5130 (1992)

    Google Scholar 

  78. Sassella, A., Borghesi, A., Garanzani, P., Borionetti, G.: Infrared response of oxygen precipitates in silicon: experimental and simulated spectra. Appl. Phys. Lett. 75, 1131 (1999)

    Google Scholar 

  79. Kot, D., Kissinger, G., Schubert, M.A., Sattler, A.: Influence of RTA pre-treatment on the morphology of oxygen precipitates in Czochralski silicon wafers observed by FTIR spectroscopy and STEM. Proceedings Forum of the Science and Technology of Silicon Materials, The 145th Committee of the JSPS (Japanese Society for the Promotion of Science), Hamamatsu, 19–22 Oct 2014, p. 81 (2014)

    Google Scholar 

  80. Hu, S.M.: Infrared absorption spectra of SiO2 precipitates of various shapes in silicon: calculated and experimental. J. Appl. Phys. 51, 5945 (1980)

    ADS  Google Scholar 

  81. Genzel, L., Martin, T.P.: Infrared absorption in small ionic crystals. Phys. Stat. Sol. B 51, 91 (1972)

    Google Scholar 

  82. Genzel, L., Martin, T.P.: Infrared absorption by surface phonons and surface plasmons in small crystals. Surf. Sci. 34, 33 (1973)

    Google Scholar 

  83. Štoudek, R., Humlíček, J.: Infrared spectroscopy of oxygen interstitials and precipitates in nitrogen-doped silicon. Phys. B: Condens. Matter. 376–377, 150 (2006)

    Google Scholar 

  84. Philip, H.R.: Part II Critiques Subpart 3 Insulators. In: Palik, E.D. (ed.) Handbook of Optical Constants of Solids, p. 749. Academic, San Diego (1985)

    Google Scholar 

  85. Henning, T., Mutchke, H.: Low-temperature infrared properties of cosmic dust analogues. Astron. Astrophys. 327, 743–754 (1997)

    Google Scholar 

  86. Zolotarev, V.M.: Optical constants of amorphous SiO2 and GeO2 in the region of valence band. Optika Spectrosc. 29, 66 (1970)

    Google Scholar 

  87. Tsu, D.V., Lucovsky, G., Davidson, B.N.: Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0<r<2) alloy system. Phys. Rev. B 40, 1795 (1989)

    ADS  Google Scholar 

  88. Borghesi, A., Piaggi, A., Sassella, A., Stella, A., Pivac, B.: Infrared study of oxygen precipitate composition in silicon. Phys. Rev. B 46, 4123 (1992)

    Google Scholar 

  89. Kot, D., Kissinger, G., Sattler, A., Müller, T.: Development of a storage getter test for Cu contaminations in silicon wafers based on ToF-SIMS measurements. Acta Phys. Pol. A 125, 965 (2014)

    Google Scholar 

  90. Kot, D., Kissinger, G., Schubert, M.A., Sattler, A., Müller, T.: Influence of Cu concentration on the getter efficiency of dislocations and oxygen precipitates in silicon wafers. Solid State Phenom. 205–206, 278 (2014)

    Google Scholar 

  91. Meduňa, M., Caha, O., Buršík, J.: Studies of influence of high temperature preannealing on oxygen precipitation in CZ Si wafers. J. Cryst. Growth 348, 53 (2012)

    Google Scholar 

  92. De Gryse, O., Clauws, P., Van Landuyt, J., Lebedev, O., Claeys, C., Simoen, E., Vanhellemont, J.: Oxide phase determination in silicon using infrared spectroscopy and transmission electron microscopy techniques. J. Appl. Phys. 91, 2493 (2002)

    Google Scholar 

  93. Nicolai, J., Burle, N., Pichaud, B.: Determination of silicon oxide precipitate stoichiometry using global and local techniques. J. Cryst. Growth 363, 93 (2013)

    Google Scholar 

  94. Kot, D., Kissinger, G., Schubert, M.A., Klingsporn, M., Huber, A., Sattler, A.: Composition of oxygen precipitates in Czochralski silicon wafers investigated by STEM with EDX/EELS and FTIR spectroscopy. Phys. Status Solid RRL 9, 405 (2015)

    Google Scholar 

  95. Kissinger, G., Gräf, D., Lambert, U., Grabolla, T., Richter, H.: Key influence of the thermal history on process-induced defects in Czochralski silicon wafers. Semicond. Sci. Technol. 12, 933 (1997)

    Google Scholar 

  96. Kissinger, G., Gräf, D., Vanhellemont, J., Lambert, U., Richter, H.: The role of grown-in defects in advanced silicon technology. Solid State Phenom. 57–58, 337 (1997)

    Google Scholar 

  97. Kissinger, G., Vanhellemont, J., Morgenstern, G., Blietz, M., Tittelbach-Helmrich, K., Obermeier, G., Wahlich, R.: Influence of boron doping on oxide precipitate nucleation and gettering of iron impurities in low thermal budget processing of Czochralski silicon. Electrochem. Soc. Proc. 99–1, 268 (1999)

    Google Scholar 

  98. Fuller, C.S., Logan, R.A.: Effect of heat treatment upon the electrical properties of silicon crystals. J. Appl. Phys. 28, 1427 (1957)

    Google Scholar 

  99. Benton, J.L., Kimerling, L.C., Stavola, M.: The oxygen related donor effect in silicon. Physica B 116, 271 (1983)

    Google Scholar 

  100. Wruck, D., Gaworzewski, P.: Electrical and infrared spectroscopic investigations of oxygen-related donors in silicon. Phys. Stat. Sol. (a) 56, 557 (1979)

    Google Scholar 

  101. Stein, H.J., Hahn, S.K., Shatas, S.C.: Rapid thermal annealing and regrowth of thermal donors in silicon. J. Appl. Phys. 59, 3495 (1986)

    Google Scholar 

  102. Tokuda, Y., Kobayashi, N., Usami, A., Inoue, Y., Imura, M.: Thermal donor annihilation and defect production in n-type silicon by rapid thermal annealing. J. Appl. Phys. 66, 3651 (1989)

    Google Scholar 

  103. Schmalz, K., Gaworzewski, P.: On the donor activity of oxygen in silicon at temperatures from 500 to 800 C. Phys. Stat. Sol. (a) 64, 151 (1981)

    Google Scholar 

  104. Cazcarra, V., Zunino, P.: Influence of oxygen on silicon resistivity. J. Appl. Phys. 51, 4206 (1980)

    Google Scholar 

  105. Coutinho, J., Jones, R., Murin, L.I., Markevich, V.P., Lindström, J.L., Öberg, S., Briddon, P.R.: Thermal double donors and quantum dots. Phys. Rev. Lett. 87, 235501 (2001)

    Google Scholar 

  106. Pesola, M., Lee, Y.J., von Boehm, J., Kaukonen, M., Nieminen, R.M.: Structures of thermal double donors in silicon. Phys. Rev. Lett. 84, 5343 (2000)

    Google Scholar 

  107. Pensl, G., Schulz, M., Hölzlein, K., Bergholz, W., Hutchison, J.L.: New oxygen donors in silicon. Appl. Phys. A 48, 49 (1989)

    Google Scholar 

  108. Wagner, P., Hage, J.: Thermal double donors in silicon. Appl. Phys. A 49, 123 (1989)

    Google Scholar 

  109. Voronkov, V.V., Voronkova, G.I., Batunina, A.V., Falster, R., Golovina, V.N., Guliaeva, A.S., Tiurina, N.B., Milvidski, M.G.: The sensitivity of thermal donor generation in silicon to self-interstitial sinks. J. Electrochem. Soc. 147, 3899 (2000)

    Google Scholar 

  110. Voronkov, V.V., Voronkova, G.I., Batunina, A.V., Falster, R., Golovina, V.N., Guliaeva, A.S., Tiurina, N.B., Milvidski, M.G.: Evolution of thermal donors in silicon enhanced by self-interstitials. Solid State Phenom. 131–133, 387 (2008)

    Google Scholar 

  111. Tajima, M., Warashina, M., Takeno, H., Abe, T.: Effect of point defects on oxygen aggregation in Si at 450 C. Appl. Phys. Lett. 65, 222 (1994)

    Google Scholar 

  112. Kot, D., Mchedlidze, T., Kissinger, G., von Ammon, W.: Characterization of deep levels introduced by RTA and by subsequent anneals in n-type silicon. ECS J. Solid State Sci. Technol. 2, P9 (2013)

    Google Scholar 

  113. Cadeo, S., Pizzini, S., Acciarri, M., Cavallini, A.: Oxygen precipitate precursors and low temperature gettering processes. I. Segregation of oxygen and thermal donor generation in the 600–850 C range. Mat. Sci. Semicond. Proc. 2, 57 (1999)

    Google Scholar 

  114. Tokuda, Y., Shimokata, T., Inoue, Y., Usami, A., Imura, M.: Donor formation at 650 degrees C in oxygen-rich silicon after rapid thermal annealing of thermal donors. Semicond. Sci. Technol. 6, 66 (1991)

    Google Scholar 

  115. Götz, W., Pensl, G., Zulehner, W.: Observation of five additional thermal donor species TD12 to TD16 and of regrowth of thermal donors at initial stages of the new oxygen donor formation in Czochralski-grown silicon. Phys. Rev. B 46, 4312 (1992)

    Google Scholar 

  116. McQuaid, S.A., Binns, M.J., Londos, C.A., Tucker, J.H., Brown, A.R., Newman, R.C.: Oxygen loss during thermal donor formation in Czochralski silicon: new insights into oxygen diffusion mechanisms. J. Appl. Phys. 77, 1427 (1995)

    Google Scholar 

  117. Kaiser, W., Frisch, H.L., Reiss, H.: Mechanism of the formation of donor states in heat-treated silicon. Phys. Rev. 112, 1546 (1958)

    Google Scholar 

  118. Oehrlein, G.S.: Silicon–oxygen complexes containing three oxygen atoms as the dominant thermal donor species in heat-treated oxygen-containing silicon. J. Appl. Phys. 54, 5453 (1983)

    Google Scholar 

  119. Wada, K.: United model for formation kinetics of oxygen thermal donors in silicon. Phys. Rev. B 30, 5884 (1984)

    Google Scholar 

  120. Wijaranakula, W.: Formation kinetics of oxygen thermal donors in silicon. Appl. Phys. Lett. 59, 1608 (1991)

    Google Scholar 

  121. Ourmazd, A., Schröter, W., Bourret, A.: Oxygen-related thermal donors in silicon: a new structural and kinetic model. J. Appl. Phys. 56, 1670 (1984)

    Google Scholar 

  122. Lee, Y.J., von Boehm, J., Nieminen, R.M.: Interstitial oxygen loss and the formation of thermal double donors in Si. Appl. Phys. Lett. 79, 1453 (2001)

    Google Scholar 

  123. Lee, Y.J., Von Boehm, J., Pesola, M., Nieminen, R.M.: Aggregation kinetics of thermal double donors in Silicon. Phys. Rev. Lett. 86, 3060 (2001)

    Google Scholar 

  124. Mao, B.-Y., Lagowski, J., Gatos, H.C.: Kinetics of thermal donor generation in silicon. J. Appl. Phys. 56, 2729 (1984)

    Google Scholar 

  125. Hallberg, T., Lindström, J.L.: Infrared vibrational bands related to the thermal donors in silicon. J. Appl. Phys. 79, 7570 (1996)

    Google Scholar 

  126. Murin, L.I., Lindström, J.L., Markevich, V.P., Misiuk, A., Londos, C.A.: Thermal double donor annihilation and oxygen precipitation at around 650 C in Czochralski-grown Si: local vibrational mode studies. J. Phys. Condens. Matter 17, S2237 (2005)

    Google Scholar 

  127. Claybourn, M., Newman, R.C.: Thermal donor formation and the loss of oxygen from solution in silicon heated at 450 C. Appl. Phys. Lett. 52, 2139 (1988)

    Google Scholar 

  128. Tokuda, Y., Katayama, M., Hattori, T.: Depth profiles of thermal donors formed at 450 degrees C in oxygen-rich n-type silicon. Semicond. Sci. Technol. 8, 163 (1993)

    Google Scholar 

  129. Hölzlein, K., Pensl, G., Schulz, M.: Trap spectrum of the “new oxygen donor” in silicon. Appl. Phys. A 34, 155 (1984)

    Google Scholar 

  130. Kamiura, Y., Hashimoto, F., Yoneta, M.: A new family of thermal donors generated around 450 C in phosphorus-doped Czochralski silicon. J. Appl. Phys. 65, 600 (1989)

    Google Scholar 

  131. Sueoka, K., Akatsuka, M., Yonemura, M., Ono, T., Asayama, E., Katahama, H.: Effect of heavy boron doping on oxygen precipitation in Czochralski silicon substrates of epitaxial wafers. J. Electrochem. Soc. 147, 756 (2000)

    Google Scholar 

  132. Murphy, J.D., Wilshaw, P.R., Pygall, B.C., Senkader, S.: Enhanced oxygen diffusion in highly doped p-type Czochralski silicon. J. Appl. Phys. 100, 103531 (2006)

    Google Scholar 

  133. Sugimura, W., Ono, T., Umeno, S., Hourai, M., Sueoka, K.: Defect formation behaviors in heavily doped Czochralski silicon 300 mm. ECS Trans. 2(2), 95 (2006)

    Google Scholar 

  134. Sueoka, K., Sadamitsu, S., Koike, Y., Kihara, T., Katahama, H.: Internal gettering for Ni contamination in Czochralski silicon wafers. J. Electrochem. Soc. 147, 3074 (2000)

    Google Scholar 

  135. Takeno, H., Aihara, K., Hayamizu, Y., Kitagawara, Y.: Influence of heavy boron doping on oxygen precipitation characteristics of Czochralski silicon crystals and its computer simulation. Electrochem. Soc. Proc. 98–1, 1012 (1998)

    Google Scholar 

  136. Wijaranakula, W.: Oxygen precipitation and defects in heavily doped Czochralski silicon. J. Appl. Phys. 72, 2713 (1992)

    Google Scholar 

  137. Ono, T., Asayama, E., Horie, H., Hourai, M., Sano, M., Tsuya, H., Nakai, K.: Behavior of defects in heavily boron doped Czochralski silicon. Jpn. J. Appl. Phys. 36, L249 (1997)

    Google Scholar 

  138. Yonemura, M., Sueoka, K., Kamei, K.: Lattice strain around platelet oxide precipitates in C- and N-doped silicon epitaxial wafers. J. Electrochem. Soc. 148, G630 (2001)

    Google Scholar 

  139. Newman, R.C., Tucker, J.H., Brown, A.R., McQuaid, S.A.: Hydrogen diffusion and the catalysis of enhanced oxygen diffusion in silicon at temperatures below 500 C. J. Appl. Phys. 70, 3061 (1991)

    Google Scholar 

  140. Stein, H.J., Hahn, S.: Hydrogen introduction and hydrogen-enhanced thermal donor formation in silicon. J. Appl. Phys. 75, 3477 (1994)

    Google Scholar 

  141. Tsetseries, L., Wang, S., Pantelides, S.T.: Thermal donor formation processes in silicon and the catalytic role of hydrogen. Appl. Phys. Lett. 88, 051916 (2006)

    Google Scholar 

  142. Simoen, E., Huang, Y.L., Ma, Y., Lauwaert, J., Clauws, P., Rafi, J.M., Ulyashin, A., Claeys, C.: J. Electrochem. Soc. 156, H434 (2009)

    Google Scholar 

  143. Hara, A., Koizuka, M., Aoki, M., Fukuda, T., Yamada-Kaneta, H., Mori, H.: Influence of grown-in hydrogen on thermal donor formation and oxygen precipitation in Czochralski silicon crystals. Jpn. J. Appl. Phys. 33, 5577 (1994)

    Google Scholar 

  144. Hara, A., Aoki, M., Fukuda, T., Ohsawa, A.: Hydrogen effects on oxygen precipitation in Czochralski silicon crystals. J. Appl. Phys. 74, 913 (1993)

    Google Scholar 

  145. Nakai, K., Inoue, Y., Yokota, H., Ikari, A., Takahashi, J., Tachikawa, A., Kitahara, K., Ohta, Y., Ohashi, W.: Oxygen precipitation in nitrogen-doped Czochralski-grown silicon crystals. J. Appl. Phys. 89, 4301 (2001)

    Google Scholar 

  146. Aihara, K., Takeno, H., Hayamizu, Y., Tamatsuka, M., Masui, T.: Enhanced nucleation of oxide precipitates during Czochralski silicon crystal growth with nitrogen doping. J. Appl. Phys. 88, 3705 (2000)

    Google Scholar 

  147. Kissinger, G., Müller, T., Sattler, A., Häckl, W., Weber, M., Lambert, U., Huber, A., Krottenthaler, P., Richter, H., von Ammon, W.: Oxygen precipitation in nitrogen doped CZ silicon. Solid State Phenom. 108–109, 17 (2005)

    Google Scholar 

  148. Karoui, A., Sahtout Karoui, F., Kvit, A., Rozgonyi, G.A.: Role of nitrogen related complexes in the formation of defects in silicon. Appl. Phys. Lett. 80, 2114 (2002)

    Google Scholar 

  149. Karoui, A., Rozgonyi, G.A.: Oxygen precipitation in nitrogen doped Czochralski silicon wafers. II. Effects of nitrogen and oxygen coupling. J. Appl. Phys. 96, 3264 (2004)

    Google Scholar 

  150. Rozgonyi, G.A., Karoui, A., Kvit, A., Duscher, G.: Nano-scale analysis of precipitates in nitrogen-doped Czochralski silicon. Microel. Eng. 66, 305 (2003)

    Google Scholar 

  151. Yang, D., Yu, X.: Nitrogen in silicon. Defect Diffus. Forum 230–232, 199 (2004)

    Google Scholar 

  152. Yu, X., Yang, D., Ma, X., Yang, J., Li, L., Que, D.: Grown-in defects in nitrogen-doped Czochralski silicon. J. Appl. Phys. 92, 188 (2002)

    Google Scholar 

  153. von Ammon, W., Dreier, P., Hensel, W., Lambert, U., Köster, L.: Influence of oxygen and nitrogen on point defect aggregation in silicon single crystals. Mat. Sci. Eng. B 36, 33 (1996)

    Google Scholar 

  154. Kissinger, G., Raming, G., Wahlich, R., Müller, T.: 300 mm Czochralski silicon wafers optimized with respect to voids with laterally homogeneous oxygen precipitation. Phys. B 407, 2993 (2012)

    Google Scholar 

  155. Izunome, K.: In: Proceedings of the 6th International Symposium on Advanced Science and Technology of Silicon Materials (JSPS Symposium), Kona, 19–23 Nov 2012, pp. 9–13 (2012)

    Google Scholar 

  156. Kissinger, G., Vanhellemont, J., Lambert, U., Dornberger, E., Sorge, R., Morgenstern, G., Grabolla, T., Gräf, D., von Ammon, W., Wagner, P., Richter, H.: Curriculum vitae of oxide precipitates: from nucleation during crystal growth to their final destination in processed wafers. Electrochem. Soc. Proc.. 98–1, 1095 (1998)

    Google Scholar 

  157. Kissinger, G., Grabolla, T., Morgenstern, G., Richter, H., Gräf, D., Vanhellemont, J., Lambert, U., von Ammon, W.: Grown-in oxide precipitate nuclei in Czochralski silicon substrates and their role in device processing. J. Electrochem. Soc. 146, 1971 (1999)

    Google Scholar 

  158. Rozgonyi, G.A., Deysher, R.P., Pearce, C.W.: The identification, annihilation, and suppression of nucleation sites responsible for silicon epitaxial stacking faults. J. Electrochem. Soc. 123, 1910 (1976)

    Google Scholar 

  159. Tan, T.Y., Gardner, E.E., Tice, W.K.: Intrinsic gettering by oxide precipitate induced dislocations in Czochralski Si. Appl. Phys. Lett. 30, 175 (1977)

    Google Scholar 

  160. Richter, H.: Gettering in the silicon device technology - an overview. In: Proceedings 1st International Autumn School Gettering and Defect Engineering in the Semiconductor Technology (GADEST), 8–18 Oct 1985, GDR, Garzau, p. 1 (1985)

    Google Scholar 

  161. Takasu, S.: VLSI science and technology/1984. In: Bean, K.E., Rozgonyi, G.A. (eds.) The Electrochemical Society Proceedings, vol. 84–7, pp. 490 The Electrochemical Society, Pennington (1984)

    Google Scholar 

  162. Myers, S.M., Seibt, M., Schröter, W.: Mechanisms of transition-metal gettering in silicon. J. Appl. Phys. 88, 3795 (2000)

    Google Scholar 

  163. Kissinger, G., Kot, D., Klingsporn, M., Schubert, M.A., Sattler, A., Müller, T.: Investigation of the copper gettering mechanism of oxide precipitates in silicon. ECS J. Solid State Sci. Technol. 4(9), N124–N129 (2015)

    Google Scholar 

  164. Rozgonyi, G.A., Pearce, C.W.: Gettering of surface and bulk impurities in Czochralski silicon wafers. Appl. Phys. Lett. 32, 747 (1978)

    Google Scholar 

  165. Borghesi, A., Pivac, B., Sassella, A., Stella, A.: Oxygen precipitation in silicon. J. Appl. Phys. 77, 4169 (1995)

    Google Scholar 

  166. Hirano, Y., Yamazaki, K., Inoue, F., Imaoka, K., Tanahashi, K., Yamada-Kaneta, H.: Impact of defects in silicon substrate on flash memory characteristics. J. Electrochem. Soc. 154, H1027 (2007)

    Google Scholar 

  167. Lanzerath, F., Buca, D., Trinkaus, H., Goryll, M., Mantl, S., Knoch, J., Breuer, U., Skorupa, W., Ghyselen, B.: Boron activation and diffusion in silicon and strained silicon-on-insulator by rapid thermal and flash lamp annealings. J. Appl. Phys. 104, 044908 (2008)

    Google Scholar 

  168. Smith, M., McMahon, R.A., Voelskow, M., Skorupa, W.: Modeling and regrowth mechanisms of flash lamp processing of SiC-on-silicon heterostructures. J. Appl. Phys. 96, 4843 (2004)

    Google Scholar 

  169. Kissinger, G., Kot, D., von Ammon, W.: Comparison of the impact of thermal treatments on the second and on the millisecond scales on the precipitation of interstitial oxygen. ECS J. Solid State Sci. Technol. 1, P269 (2012)

    Google Scholar 

  170. Kissinger, G., Vanhellemont, J., Obermeier, G., Esfandyari, J.: Denuded zone formation by conventional and rapid thermal anneals. Mat. Sci. Eng. B 73, 106 (2000)

    Google Scholar 

  171. Akatsuka, M., Okui, M., Morimoto, N., Sueoka, K.: Effect of rapid thermal annealing on oxygen precipitation behavior in silicon wafers. Jpn. J. Appl. Phys. 40, 3055 (2001)

    Google Scholar 

  172. Frenkel, J.: Kinetic Theory of Liquids. Oxford University Press, Oxford (1946)

    MATH  Google Scholar 

  173. Müller, T., Kissinger, G., Krottenthaler, P., Seuring, C., Wahlich, R., von Ammon, W.: Precipitation enhancement of ``so-called'' defect-free Czochralski silicon material. Solid State Phenom. 108–109, 11 (2005)

    Google Scholar 

  174. Park, J.-G., Lee, G.-S., Lee, J.-S., Kurita, K., Furuya, H.: Extremely proximity gettering for semiconductor devices. Mat. Sci. Eng. B 134, 249 (2006)

    Google Scholar 

  175. Shabani, M.B., Shiina, Y., Kirscht, F.G., Shimanuki, Y.: Recent advanced applications of AAS and ICP-MS in the semiconductor industry. Mat. Sci. Eng. B 102, 238 (2003)

    Google Scholar 

  176. Shabani, M.B., Yoshimi, T., Abe, H.: Low-temperature out-diffusion of Cu from silicon wafers. J. Electrochem. Soc. 143, 2025 (1996)

    Google Scholar 

  177. Hölzl, R., Fabry, L., Range, K.-J., Pech, R.: MeV-boron implanted layer, oxygen precipitates and poly-silicon back side combined in one silicon wafer: at what defect will Cu and Ni be gettered? Appl. Phys. A 74, 545 (2002)

    Google Scholar 

  178. Fabry, L., Hölzl, R., Andrukhiv, A., Matsumoto, K., Qiu, J., Koveshnikov, S., Goldstein, M., Grabau, A., Horie, H., Takeda, R.: Test methods for measuring bulk copper and nickel in heavily doped p-type silicon wafers. J. Electrochem. Soc. 153, G566 (2006)

    Google Scholar 

  179. Hölzl, R., Range, K.J., Fabry, L.: Comparison of different gettering techniques for Cu-p+ versus polysilicon and oxygen precipitates. Appl. Phys. A 75, 591 (2002)

    Google Scholar 

  180. Shabani, M.B., Okuuchi, S., Yoshimi, T., Shingyoji, T., Kirscht, F.G.: Effect of dopants and oxygen precipitation on low-temperature out-diffusion and gettering of Cu in silicon wafer. In: Claeys, C.L., Rai-Choudhury, P., Watanabe, M., Stallhofer, P., Dawson, H.J. (eds.) Proceedings high purity silicon V, vol. 98–13, p. 313. The Electrochemical Society, Pennington (1998)

    Google Scholar 

  181. Kim, K.-S., Lee, S.-W., Kang, H.-B., Lee, B.-Y., Park, S.-M.: Quantitative evaluation of gettering efficiencies below 1 × 1012 atoms∕cm3 in p-type silicon using a #2#1 tracer. J. Electrochem. Soc. 155, H912 (2008)

    Google Scholar 

  182. Istratov, A.A., Weber, E.R.: Physics of copper in silicon. J. Electrochem. Soc. 149, G21 (2002)

    Google Scholar 

  183. Hozawa, K., Isomae, S., Yugami, J.: Copper distribution near a SiO2/Si interface under low-temperature annealing. Jpn. J. Appl. Phys. 41, 5887 (2002)

    Google Scholar 

  184. Hozawa, K., Yugami, J.: Copper diffusion behavior in SiO2/Si structure during 400 C annealing. Jpn. J. Appl. Phys. 43, 1 (2004)

    Google Scholar 

  185. Lee, S.-W., Kim, Y.-H., Kim, K.-S., Hong, B.-S., Lee, B.-Y.: Understanding the behaviors of Cu during a post-gate-oxidation device process by using an isotope tracking analysis. J. Korean Phys. Soc. 48(6), 1548 (2006)

    Google Scholar 

  186. Graff, K.: Metal Impurities in Silicon-Device Fabrication. Springer Series Material Science, vol. 24. Springer-Verlag Berlin Heidelberg (1995)

    Google Scholar 

  187. Seacrist, M., Stinson, M., Libbert, J., Standley, R., Bins, J.: Determination of minimum oxygen precipitate growth conditions for gettering of copper and nickel. In: Huff, H.R., Fabry, L., Kishino, S, (eds.) Semiconductor silicon 2002, vol. 2002-2, p. 638. The Electrochemical Society, Pennington (2002)

    Google Scholar 

  188. Hölzl, R., Blietz, M., Fabry, L., Schmolke, R.: Gettering efficiencies and their dependence on material parameters and thermal processes: how can this be modeled. In: Huff, H.R., Fabry, L., Kishino, S. (eds.) Proceedings semiconductor silicon 2002, vol. 2002-2, p. 608. The Electrochemical Society, Pennington (2002)

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Dawid Kot very much for his engaged work in the investigation of oxygen precipitation during his work as a PhD student and as a post-doc at IHP. She also thanks her colleague Dr. Jaroslaw Dabrowski very much for this collaboration in the field of ab initio calculation. Many of the results presented here were obtained in common research projects between IHP and Siltronic AG and the author wants to thank all the colleagues from Siltronic AG for the fruitful collaboration. Especially acknowledged are Dr. Wilfried von Ammon, Dr. Andreas Sattler, Dr. Timo Müller, Dr. Ulrich Lambert, and Dr. Dieter Gräf. Many thanks also to Prof. Jan Vanhellemont for the inspiring discussions during his time at IMEC and Wacker Siltronic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gudrun Kissinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kissinger, G. (2015). Oxygen Precipitation in Silicon. In: Yoshida, Y., Langouche, G. (eds) Defects and Impurities in Silicon Materials. Lecture Notes in Physics, vol 916. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55800-2_6

Download citation

Publish with us

Policies and ethics