Skip to main content

Environmental Regulation of Floral Color

  • Chapter
  • First Online:
Evolutionary Biology: Mechanisms and Trends
  • 1880 Accesses

Abstract

Analyzing the evolution of complex traits requires multiple tools and perspectives. Here, we consider one perception that complex trait is a system that undergoes multiple transformations involving factors both genetic and environmental. By carefully dissecting the genetic basis of a complex trait and examining how the genetic basis responds to the natural environment and the consequences, we argue that the genetic components of a complex trait and their interactions are inherently information-rich for evolutionary studies if we know what kind of data to gather. We take the anthocyanin pathway in Ipomoea purpurea flower as a model to analyze how the natural environment regulates the flower color and how the gene expression is modified to provide the biochemical substance for the phenotype. As summarized here with multidisciplinary data, the relationship between genotype and phenotype is likely to be elucidated for the complex trait of floral color in the foreseeable future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, Koes R, Walbot V (1998) Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10:1135–1149

    PubMed  CAS  Google Scholar 

  • Alroy J (1998) Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731–734

    Article  PubMed  CAS  Google Scholar 

  • Arroyo-Garcia R, Ruiz-Garcia L, Bolling L, Ocete R, Lopez MA, Arnold C, Ergul A, Soylemezoglu G, Uzun HI, Cabello F, Ibanez J, Aradhya MK, Atanassov A, Atanassov I, Balint S, Cenis JL, Costantini L, Goris-Lavets S, Grando MS, Klein BY, McGovern PE, Merdinoglu D, Pejic I, Pelsy F, Primikirios N, Risovannaya V, Roubelakis-Angelakis KA, Snoussi H, Sotiri P, Tamhankar S, This P, Troshin L, Malpica JM, Lefort F, Martinez-Zapater JM (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15:3707–3714

    Article  PubMed  CAS  Google Scholar 

  • Atchley WR, Terhalle W, Dress A (1999) Positional dependence, cliques, and predictive motifs in the bHLH protein domain. J Mol Evol 48:501–516

    Article  PubMed  CAS  Google Scholar 

  • Avargues-Weber A, Deisig N, Giurfa M (2011) Visual cognition in social insects. Annu Rev Entomol 56:423–443

    Article  PubMed  CAS  Google Scholar 

  • Biolley J, Jay M (1993) Anthocyanins in modern roses—chemical and colorimetric features in relation to the color range. J Exp Bot 44:1725–1734

    Article  CAS  Google Scholar 

  • Bradshaw HD, Schemske DW (2003) Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426:176–178

    Article  PubMed  CAS  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510

    Article  PubMed  CAS  Google Scholar 

  • Campbell AD, Huysamer M, Stotz HU, Greve LC, Labavitch JM (1990) Comparison of ripening processes in intact tomato fruit and excised pericarp disks. Plant Physiol 94:1582–1589

    Article  PubMed  CAS  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    Article  CAS  Google Scholar 

  • Chappell J, Hahlbrock K (1984) Transcription of plant defense genes in response to uv-light or fungal elicitor. Nature 311:76–78

    Article  CAS  Google Scholar 

  • Chittka L (1996) Does bee color vision predate the evolution of flower color? Naturwissenschaften 83:136–138

    Article  CAS  Google Scholar 

  • Christie PJ, Alfenito MR, Walbot V (1994) Impact of low-temperature stress on general phenylpropaniod and anthocyanin pathways:enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541–549

    Article  CAS  Google Scholar 

  • Clegg MT, Durbin ML (2003) Tracing floral adaptations from ecology to molecules. Nat Rev Genet 4:206–215

    Article  PubMed  CAS  Google Scholar 

  • Conn S, Franco C, Zhang W (2010) Characterization of anthocyanic vacuolar inclusions in Vitis vinifera L. cell suspension cultures. Planta 231:1343–1360

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. John Murray, London

    Google Scholar 

  • Debeaujon I, Peeters AJM, Leon-Kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853–871

    PubMed  CAS  Google Scholar 

  • Des Marais DL, Rausher MD (2008) Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature 454:762–U785

    PubMed  CAS  Google Scholar 

  • DeWitt TJ, Scheiner SM (2004) Phenotypic plasticity. Oxford University Press, Oxford

    Google Scholar 

  • Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71:338–350

    Article  PubMed  CAS  Google Scholar 

  • Durbin ML, Lundy KE, Morrell PL, Torres-Martinez CL, Clegg MT (2003) Genes that determine flower color: the role of regulatory changes in the evolution of phenotypic adaptations. Mol Phylogenet Evol 29:507–518

    Article  PubMed  CAS  Google Scholar 

  • Emerson RA (1921) The genetic relations of plant colors in maize. Cornell University Press, New York

    Book  Google Scholar 

  • Foster JB (1964) Evolution of mammals on islands. Nature 202:234–235

    Article  Google Scholar 

  • Glover BJ, Martin C (1998) The role of petal cell shape and pigmentation in pollination success in Antirrhinum majus. Heredity 80:778–784

    Article  Google Scholar 

  • Harborne JB, Baxter H (1999) The handbook of natural flavonoids. vol 1 and 2. Wiley, New York, p 644 and p 236

    Google Scholar 

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  PubMed  CAS  Google Scholar 

  • Hering E (1964) Outline of the theory of light sense. Harvard University Press, Cambridge

    Google Scholar 

  • Hosokawa K (1999) Cell layer-specific accumulation of anthocyanins in response to gibberellic acid in tepals of Hyacinthus orientalis. Biosci Biotechnol Biochem 63:930–931

    Article  CAS  Google Scholar 

  • Jacobs GH (2009) Evolution of colour vision in mammals. Philos Trans R Soc Lond B Biol Sci 364:2957–2967

    Article  PubMed  CAS  Google Scholar 

  • Kelber A, Osorio D (2010) From spectral information to animal colour vision: experiments and concepts. Proc Biol Sci 277:1617–1625

    Article  PubMed  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  PubMed  CAS  Google Scholar 

  • Kramer EM, Hodges SA (2010) Aquilegia as a model system for the evolution and ecology of petals. Philos Trans R Soc Lond B Biol Sci 365:477–490

    Article  PubMed  Google Scholar 

  • Kubasek WL, Shirley BW, McKillop A, Goodman HM, Briggs W, Ausubel FM (1992) Regulation of flavonoid biosynthetic genes in germinating arabidopsis seedlings. Plant Cell 4:1229–1236

    PubMed  CAS  Google Scholar 

  • Lei MG, Zhu CM, Liu YD, Karthikeyan AS, Bressan RA, Raghothama KG, Liu D (2011) Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis. New Phytol 189:1084–1095

    Article  PubMed  CAS  Google Scholar 

  • Lipsick JS (1996) One billion years of Myb. Oncogene 13:223–235

    CAS  Google Scholar 

  • Lu Y, Du J, Tang J, Wang F, Zhang J, Huang J, Liang W, Wang L (2009) Environmental regulation of floral anthocyanin synthesis in Ipomoea purpurea. Mol Ecol 18:3857–3871

    Article  PubMed  CAS  Google Scholar 

  • Markham KR, Gould KS, Winefield CS, Mitchell KA, Bloor SJ, Boase MR (2000) Anthocyanic vacuolar inclusions—their nature and significance in flower colouration. Phytochemistry 55:327–336

    Article  PubMed  CAS  Google Scholar 

  • Marrs KA, Alfenito MR, Lloyd AM, Walbot V (1995) A glutathione-S-transferase involved in vacuolar transfer encoded by the maize gene bronze-2. Nature 375:397–400

    Article  PubMed  CAS  Google Scholar 

  • Martin C, PazAres J (1997) MYB transcription factors in plants. Trends Genet 13:67–73

    Article  PubMed  CAS  Google Scholar 

  • Miller R, Owens SJ, Rorslett B (2011) Plants and colour: flowers and pollination. Opt Laser Technol 43:282–294

    Article  CAS  Google Scholar 

  • Millien V (2006) Morphological evolution is accelerated among island mammals. PLoS Biol 4:1863–1868

    CAS  Google Scholar 

  • Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2007) Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot 58:1935–1945

    Article  PubMed  CAS  Google Scholar 

  • Mueller LA, Goodman CD, Silady RA, Walbot V (2000) AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123:1561–1570

    Article  PubMed  CAS  Google Scholar 

  • Noda K, Glover BJ, Linstead P, Martin C (1994) Flower color intensity depends on specialized cell-shape controlled by a myb-related transcription factor. Nature 369:661–664

    Article  PubMed  CAS  Google Scholar 

  • Nozaki K, Takamura T, Fukai S (2006) Effects of high temperature on flower colour and anthocyanin content in pink flower genotypes of greenhouse chrysanthemum (Chrysanthemum morifolium Ramat.). J Hortic Sci Biotechnol 81:728–734

    CAS  Google Scholar 

  • Quattrocchio F, Verweij W, Kroon A, Spelt C, Mol J, Koes R (2006) PH4 of petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18:1274–1291

    Article  PubMed  CAS  Google Scholar 

  • Rausher MD (2006) The evolution of flavonoids and their genes. In: Grotewold E (ed) The Science of flavonoids. Springer, New York, pp 179–212

    Google Scholar 

  • Richards CM, Volk GM, Reilley AA, Henk AD, Lockwood DR, Reeves PA, Forsline PL (2009) Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. Tree Genet Genomes 5:339–347

    Article  Google Scholar 

  • Saito N, Tatsuzawa F, Yoda K, Yokoi M, Kasahara K, Iida S, Shigihara A, Honda T (1995) Acylated cyanidin glycosides in the violet-blue flowers of Ipomoea purpurea. Phytochemistry 40:1283–1289

    Article  PubMed  CAS  Google Scholar 

  • Saito N, Tatsuzawa F, Yokoi M, Kasahara K, Iida S, Shigihara A, Honda T (1996) Acylated pelargonidin glycosides in red-purple flowers of Ipomoea purpurea. Phytochemistry 43:1365–1370

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Hoerner R, Weissenbock G (2003) Contribution of phenolic compounds to the UV-B screening capacity of developing barley primary leaves in relation to DNA damage and repair under elevated UV-B levels. Phytochemistry 64:243–255

    Article  PubMed  CAS  Google Scholar 

  • Shackel KA, Greve C, Labavitch JM, Ahmadi H (1991) Cell turgor changes associated with ripening in tomato pericarp tissue. Plant Physiol 97:814–816

    Article  PubMed  CAS  Google Scholar 

  • Shang YJ, Venail J, Mackay S, Bailey PC, Schwinn KE, Jameson PE, Martin CR, Davies KM (2011) The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of Antirrhinum. New Phytol 189:602–615

    Article  PubMed  CAS  Google Scholar 

  • Smith T, Guild J (1932) The C.I.E. colorimetric standards and their use. Trans Opt Soc 33:73–134

    Article  CAS  Google Scholar 

  • Stevens M, Stoddard MC, Higham JP (2009) Studying Primate Color: towards visual system-dependent methods. Int J Primatol 30:893–917

    Article  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  PubMed  CAS  Google Scholar 

  • Ubi BE, Honda C, Bessho H, Kondo S, Wada M, Kobayashi S, Moriguchi T (2006) Expression analysis of anthocyanin biosynthetic genes in apple skin: Effect of UV-B and temperature. Plant Sci 170:571–578

    Article  CAS  Google Scholar 

  • Valladares F, Sanchez-Gomez D, Zavala MA (2006) Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J Ecol 94:1103–1116

    Article  Google Scholar 

  • van Nocker S, Ludwig P (2003) The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genomics 4:50

    Article  PubMed  Google Scholar 

  • Venditti C, Meade A, Pagel M (2011) Multiple routes to mammalian diversity. Nature 479:393–396

    Article  PubMed  CAS  Google Scholar 

  • Verweij W, Spelt C, Di Sansebastiano GP, Vermeer J, Reale L, Ferranti F, Koes R, Quattrocchio F (2008) An H(+) P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat Cell Biol 10:1456–U1180

    Article  PubMed  CAS  Google Scholar 

  • Via S, Gomulkiewicz R, Dejong G, Scheiner SM, Schlichting CD, Vantienderen PH (1995) Adaptive phenotypic plasticity—consensus and controversy. Trends Ecol Evol 10:212–217

    Article  PubMed  CAS  Google Scholar 

  • Via S, Lande R (1985) Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39:505–522

    Article  Google Scholar 

  • Vogt T (2010) Phenylpropanoid Biosynthesis. Mol Plant 3:2–20

    Article  PubMed  CAS  Google Scholar 

  • Weiss MR (1995) Floral color-change—a widespread functional convergence. Am J Bot 82:167–185

    Article  Google Scholar 

  • Whibley AC, Langlade NB, Andalo C, Hanna AI, Bangham A, Thebaud C, Coen E (2006) Evolutionary paths underlying flower color variation in Antirrhinum. Science 313:963–966

    Article  PubMed  CAS  Google Scholar 

  • Whitney HM, Bennett KMV, Dorling M, Sandbach L, Prince D, Chittka L, Glover BJ (2011) Why do so many petals have conical epidermal cells? Ann Bot 108:609–616

    Article  PubMed  Google Scholar 

  • Whitney HM, Kolle M, Andrew P, Chittka L, Steiner U, Glover BJ (2009) Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science 323:130

    Article  PubMed  CAS  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Kondo T, Okazaki Y, Katou K (1995) Cause of blue petal color. Nature 373:291–291

    Article  CAS  Google Scholar 

  • Yoshida K, Miki N, Momonoi K, Kawachi M, Katou K, Okazaki Y, Uozumi N, Maeshima M, Kondo T (2009) Synchrony between flower opening and petal-color change from red to blue in morning glory, Ipomoea tricolor cv. heavenly blue. Proc Jpn Acad, Ser B 85:187–197

    Article  CAS  Google Scholar 

  • Zufall RA, Rausher MD (2004) Genetic changes associated with floral adaptation restrict future evolutionary potential. Nature 428:847–850

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingqing Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lu, Y., Xie, L., Zhang, R. (2012). Environmental Regulation of Floral Color. In: Pontarotti, P. (eds) Evolutionary Biology: Mechanisms and Trends. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30425-5_8

Download citation

Publish with us

Policies and ethics