Skip to main content

Water on the Moon: What Is Derived from the Observations?

  • Chapter
Moon

Introduction

Further exploration and utilization of the Moon crucially depends on the answer to the question: is there water on the Moon and, if so, in which form? Being a differentiated silicate planet without an atmosphere and with high day temperature, the Moon did not inspire many expectations for presence of water or any other volatile with small molecular weight. A hope of finding ice on the lunar surface was resuscitated by the hypothesis of ice delivery to the lunar poles after cometary impacts (Watson et al. 1961, Arnold 1979). Water molecules from a comet nucleus were supposed to migrate in the lunar exosphere until being trapped in cold polar regions. Less important sources of migrating water could be water-bearing meteorites and volcanic gases. Much effort has been devoted to study formation of “polar caps” and ice stability (e.g. Butler 1997, Starukhina 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams, J., Filice, A.: Spectral reflectance 0.4 to 2.0 microns of silicate rock powders. J. Geophys. Res. 72, 5705–5715 (1967)

    Article  Google Scholar 

  • Arnold, J.R.: Ice in the lunar polar regions. J. Geophys. Res. 84, 5659–5668 (1979)

    Article  Google Scholar 

  • Basilevsky, A.T., Ivanov, B.A., Florensky, K.P., Yakovlev, O.I., Feldman, B.I., Granovsky, L.V.: Impact craters on the Moon and planets Nauka, Moscow (1983) (in Russian)

    Google Scholar 

  • Bibring, J.-P., Langevin, Y., Rocard, F.: Synthesis of molecules by irradiation in silicates. In: Proc. Lunar. Sci. Conf.13, pp. A446–A450. LPI, Houston (1982)

    Google Scholar 

  • Biersack, J.P., Haggmark, L.G.: A Monte Carlo computer program for the transport of energetic ions in amorphous target. Nucl. Instr. Methods 174, 257–269 (1980)

    Article  Google Scholar 

  • Borg, J., Maurette, M., Durrieu, L., Jouret, C.: Ultramicroscopic features in micron-sized lunar dust grains and cosmophysics. In: Proc. Lunar. Sci. Conf. 2nd, vol. 3, pp. 2027–2040. LPI, Houston (1971)

    Google Scholar 

  • Borg, J., Comstick, G.M., Langevin, Y., Maurette, M., Jouffrey, B., Jouret, C.: A Monte-Carlo model for the exposure history of lunar dust grains in the ancient solar wind. Earth Planet Sci. Lett. 29, 161–174 (1976)

    Article  Google Scholar 

  • Burke, D.J., Dukes, C.A., Kim, J.H., Shi, J., Famá, M., Baragiola, R.A.: Solar wind contribution to surficial lunar water: laboratory investigations. Icarus 211, 1082–1088 (2011)

    Article  Google Scholar 

  • Butler, B.J.: The migration of volatiles on the surfaces of Mercury and the Moon. J. Geophys. Res. 102, 19283–19291 (1997)

    Article  Google Scholar 

  • Cadenhead, D., Brown, M., Rice, D., Stetter, J.: Some surface area and porosity characterization of lunar soils. In: Proc. Lunar. Sci. Conf. 8, pp. 1291–1303. LPI, Houston (1977)

    Google Scholar 

  • Clark, R.N.: Detection of adsorbed water and hydroxyl on the Moon. Science 326, 562–564 (2009)

    Article  Google Scholar 

  • Colaprete, A., 16 co-authors: Detection of water in the LCROSS ejecta plume. Science 330, 463–468 (2010)

    Article  Google Scholar 

  • Des Marais, D.J., Hayes, J.M., Meinschein, W.G.: The distribution in lunar soil of hydrogen released by pyrolysis. In: Proc. Lunar. Sci. Conf. 5, pp. 1811–1822. LPI, Houston (1974)

    Google Scholar 

  • Dran, J.C., Durrieu, L., Jouret, C., Maurette, M.: Habit and texture studies of lunar and meteoritic material with a 1 MeV electron microscope. Earth Planet Sci. Lett. 9, 391–400 (1970)

    Article  Google Scholar 

  • Eguchi, K., Ogiwara, S., Oguchi, M., et al.: A design concept of water production experiment mission for lunar resource utilization. Solar System Res. 33, 376–381 (1999)

    Google Scholar 

  • Feldman, W.C., Maurice, S., Binder, A.B., Barraclough, B.L., Elphic, R.C., Lawrence, D.J.: Fluxes of fast and epithermal neutrons from Lunar Prospector: Evidence for water ice at the lunar poles. Science 281, 1496–1500 (1998)

    Article  Google Scholar 

  • Feldman, W.C., Lawrence, D.J., Elphic, R.C., Barraclough, B.L., Maurice, S., Genetay, I., Binder, A.B.: Polar hydrogen deposits on the Moon. J. Geophys Res. 105, 4175–4195 (2000)

    Article  Google Scholar 

  • Feldman, W.C., 11 colleagues: Evidence for water ice near the lunar poles. J. Geophys Res.-Planets 106, 23231–23251 (2001)

    Article  Google Scholar 

  • Greenwood, J.P., Itoh, S., Sakamoto, N., Taylor, L.A., Warren, P.H., Yurimoto, H.: Water in Apollo rock samples and the D/H of lunar apatite. Lunar Planet Sci. 41, LPI, Houston, abstract # 2439 (2010)

    Google Scholar 

  • Grossman, J.J., Mukherjee, N.R., Ryan, J.A.: Microphysical, microchemical and adhesive properties of lunar material III: Gas interaction with lunar material. In: Proc. Lunar Sci. Conf., vol. 3, pp. 2259–2269. LPI, Houston (1972)

    Google Scholar 

  • Gruen, D.M., Siskind, B., Wright, R.B.: Chemical implantation, isotopic trapping effects, and induced hydroscopicity resulting from 15 keV ion bombardment of sapphire. J. Chem. Phys. 65, 363–378 (1976)

    Article  Google Scholar 

  • Guseva, M.I., Martynenko, Y.V.: Radiation blistering. Physics-Uspekhi (Advances in Physical Sciences) 24, 996–1007 (1981)

    Google Scholar 

  • Hapke, B.: Coherent backscatter and the radar characteristics of outer planet satellites. Icarus 88, 407–417 (1990)

    Article  Google Scholar 

  • Harmon, J.K., Perillat, P.J., Slade, M.A.: High-resolution radar imaging of Mercury’s north pole. Icarus 149, 1–15 (2001)

    Article  Google Scholar 

  • Haskin, L., Warren, P.: Lunar chemistry. In: Heiken, G.H., Vaniman, D.T., French, B.M. (eds.) Lunar Sourcebook, pp. 357–474. Cambridge University Press, New York (1991)

    Google Scholar 

  • Hibbitts, C.A., Grieves, G.A., Poston, M.J., Dyar, M.D., Alexandrov, A.B., Johnson, M.A., Orlando, T.M.: Thermal stability of water and hydroxyl on the surface of the Moon from temperature-programmed desorption measurements of lunar analog materials. Icarus 213, 64–72 (2011)

    Article  Google Scholar 

  • Housley, R.M., Grant, R.W., Paton, N.E.: Origin and characteristics of excess Fe metal in lunar glass welded aggregates. In: Proc Lunar Sci Conf. 4th, pp. 2737–2749. LPI, Houston (1973)

    Google Scholar 

  • Hutcheon, I.D.: Micrometeorites and solar flare particles in and out of the ecliptic. J. Geophys Res. 80, 4471–4483 (1975)

    Article  Google Scholar 

  • Keller, L.P., McKay, D.S.: The nature and origin of rims on lunar soil grains. Geochim Cosmochim Acta 61, 2331–2340 (1997)

    Article  Google Scholar 

  • Kramer, G.Y., Besse, S., Dhingra, D., Nettles, J., Klima, R., Garrick-Bethell, I., Clark, R.N., Combe, J.-P., Head, J.W., Taylor, L.A., Pieters, C.M., Boardman, J., McCord, T.B.: M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies. J. Geophys Res. 116 (2011) (in Press), doi:10.1029/2010JE00

    Google Scholar 

  • Lawrence, D.J., Feldman, W.C., Elphic, R.C., Hagerty, J.J., Maurice, S., McKinney, G.W., Prettyman, T.H.: Improved modeling of Lunar Prospector neutron spectrometer data: Implications for hydrogen deposits at the lunar poles. J. Geophys Res. 111, E08001 (2006)

    Article  Google Scholar 

  • Lee, R.W.: Diffusion of hydrogen in natural and synthetic fused qurtz. J. Chem. Phys. 38, 448–455 (1963)

    Article  Google Scholar 

  • Leich, D.A., Tombrello, T.A., Burnett, D.S.: The depth of distribution of hydrogen in lunar material. Lunar Sci. 4, 463–465 (1973) (abstract)

    Google Scholar 

  • Lord, H.C.: Hydrogen and helium implantation into olivine and enstatite: Retention coefficients, saturation concentrations, and temperature-release profiles. J. Geoph. Res. 73, 5271–5280 (1968)

    Article  Google Scholar 

  • Mattern, P.L., Thomas, G.J., Bauer, W.: Hydrogen and helium implantation in vitreous silica. J. Vac. Sci. Technol. 13, 430–436 (1976)

    Article  Google Scholar 

  • McCord, T.B., Taylor, L.A., Combe, J.P., Kramer, G., Pieters, C.M., Sunshine, J.M., Clark, R.N.: Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the Moon Mineralogy Mapper (M3). J. Geophys. Res. 116 (2011), doi:10.1029/2010JE003711

    Google Scholar 

  • McCubbin, F.M., Steele, A., Nekvasil, H., Schnieders, A., Rose, T., Fries, M.: Detection of structurally bound hydroxyl in apatite from Apollo mare basalt 15058, 128. Lunar Planet. Sci 42, LPI, Houston, abstract #2468 (2010)

    Google Scholar 

  • McKay, D.S., Heiken, G., Basu, A., Blanford, G., Simon, S., Reedy, R., French, B.M., Papike, J.: The lunar regolith. In: Heiken, G.H., Vaniman, D.T., French, B.M. (eds.) Lunar Sourcebook, pp. 285–356. Cambridge University Press, New York (1991)

    Google Scholar 

  • Mitrofanov, I.G., 28 co-authors: Neutron mapping of the lunar south pole using the LRO neutron detector experiment LEND. Science 330, 483–486 (2010)

    Google Scholar 

  • Mitrofanov, I.G., 15 co-athours: Neutron suppression regions at lunar poles as local areas of water-rich permafrost. Lunar Planet. Sci. 42, LPI, Houston, abstract #1787 (2011)

    Google Scholar 

  • Moulson, J., Roberts, J.P.: Water in silica glass. Trans. Brit. Ceramic Soc. 59, 388–394 (1960)

    Google Scholar 

  • Nozette, S., Lichtenberg, C., Spudis, P., Bonner, R., Ort, W., Malaret, E., Robinson, M., Shoemaker, E.: The Clementine bistatic radar experiment. Science 274, 1495–1498 (1996)

    Article  Google Scholar 

  • Peri, J.B., Hannan, R.B.: Surface hydroxyl groups on γ-alumina. J. Phys. Chem. 64, 1526–1530 (1960)

    Article  Google Scholar 

  • Pieters, C.M., 28 colleagues: Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science 326, 568–572 (2009)

    Article  Google Scholar 

  • Rivkin, A.S., Howell, E.S., Britt, D.T., Lebovsky, L.A., Nolan, M.C., Branston, D.D.: 3μm photometric survey of M- and E-class asteroids. Icarus 117, 90–100 (1995)

    Article  Google Scholar 

  • Roth, J.: Chemical sputtering. In: Behrisch, R. (ed.) Sputtering by Particle Bombardment II, pp. 91–146. Springer, New York (1983)

    Chapter  Google Scholar 

  • Saal, A.E., Hauri, E.H., Cascio, M.L., Van Orman, J.A., Rutherford, M.C., Cooper, R.F.: Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454, 192–195 (2008)

    Article  Google Scholar 

  • Scherzer, B.M.U.: Development of surface topography due to gas ion implantation. In: Behrisch, R. (ed.) Sputtering by Particle Bombardment II, pp. 271–356. Springer, New York (1983)

    Chapter  Google Scholar 

  • Shkuratov, Y.G., Starukhina, L.V., Hoffmann, H., Arnold, G.: A model of spectral albedo of particulate surfaces: Implications for optical properties of the Moon. Icarus 137, 235–246 (1999)

    Article  Google Scholar 

  • Shoemaker, E.M., Hait, M.H., Swann, G.A., Schleicher, D.L., Schaber, G.G., Sutton, R.L., Dahlem, D.H., Goddard, E.N., Waters, A.C.: Origin of the lunar regolith at Tranquility Base. In: Proc. Apollo 11 Lunar Sci. Conf., LPI, Houston, pp. 2399–2412 (1970)

    Google Scholar 

  • Siegler, M.A., Bills, B.G., Paige, D.A.: Effects of orbital evolution on lunar ice stability. J. Geophys. Res. 116, E03010 (2011), doi:10.1029/2010JE003652

    Google Scholar 

  • Simpson, R.A., Tyler, G.L.: Reanalysis of Clementine bistatic radar data from the lunar South Pole. J. Geoph. Res. 104, 3845–3862 (1999)

    Article  Google Scholar 

  • Siskind, B., Gruen, D.M., Varma, K.: Chemical implantation of 10 keV H +  and D +  in rutile. J. Vac. Sci. Technol. 14, 537–542 (1977)

    Article  Google Scholar 

  • Slade, M.A., Butler, B.J., Muhleman, D.O.: Mercury radar imaging: Evidence for polar ice. Science 258, 635–640 (1992)

    Article  Google Scholar 

  • Stacy, N.J.S., Campbell, D.B., Ford, P.G.: Arecibo radar mapping of the lunar poles: A search for ice deposits. Science 276, 1527–1530 (1997)

    Article  Google Scholar 

  • Starukhina, L.V.: Excess hydrogen on the lunar poles: water ice or solar wind induced OH? (abstract). In: The 3rd International Conference on the Exploration and Utilization of the Moon, Moscow. Russian Acad. Sci., p. 38 (1998a)

    Google Scholar 

  • Starukhina, L.V.: Estimation of solar wind induced 2.9 μm absorption in lunar regolith: implication for the problem of water detection on the lunar poles (abstract). In: The 3rd International Conference on the Exploration and Utilization of the Moon, Moscow. Russian Acad. Sci., p. 39 (1998b)

    Google Scholar 

  • Starukhina, L.V.: The excess hydrogen on the lunar poles: water ice or chemically trapped solar wind? Lunar Planet. Sci. 30, abstract #1093 (1999a)

    Google Scholar 

  • Starukhina, L.V.: Estimation of 3μm light absorption by hydroxyl of solar wind origin: implication for the problem of water detection on the surfaces of atmosphereless celestial bodies. Lunar Planet. Sci. 30, LPI, Houston, abstract #1094 (1999b)

    Google Scholar 

  • Starukhina, L.V.: Light absorption by radiation-induced hydroxyl ions and the problem of finding water on atmosphereless celestial bodies. Solar System Research 33, 291–295 (1999c)

    Google Scholar 

  • Starukhina, L.V.: High radar response of Mercury polar regions: water ice or cold silicates? Lunar Planet. Sci. 31, LPI, Houston, abstract # 1301 (2000a)

    Google Scholar 

  • Starukhina, L.V.: On the origin of excess hydrogen at the lunar poles. Solar System Res. 34, 215–219 (2000b)

    Google Scholar 

  • Starukhina, L.V.: Water detection on atmosphereless celestial bodies: Alternative explanations of the observations. J. Geophys. Res.-Planets 106, 14701–14710 (2001)

    Article  Google Scholar 

  • Starukhina, L.V.: 3μm light absorption by hydroxyl of solar wind origin and the prospects of water detection on asteroids with NIR spectroscopy. In: Proc. ACM 2002, Berlin, pp. 513–516 (2002)

    Google Scholar 

  • Starukhina, L.V.: Computer Simulation of Sputtering of Lunar Regolith by Solar Wind Protons: Contribution to Alteration of Surface Composition and to Hydrogen Flux at the Lunar Poles. Solar System Research 37, 36–50 (2003)

    Article  Google Scholar 

  • Starukhina, L.V.: Polar regions of the Moon as a potential repository of solar-wind-implanted gases. Adv. Space Res. 37, 50–58 (2006)

    Article  Google Scholar 

  • Starukhina, L.V.: Ice on the moon and Mercury: reanalysis of the origin and survival conditions. Lunar and Planetary Science 39, LPI, Houston, abstract #1141 (2008)

    Google Scholar 

  • Starukhina, L.V.: Depth of 3μm lunar absorption bands: the effect of surface brightness. A Wet vs. Dry Moon: Exploring Volatile Reservoirs and Implications for the Evolution of the Moon and Future Exploration, LPI, Houston, Abstr. #6002 (2011)

    Google Scholar 

  • Starukhina, L.V., Shkuratov, Y.G.: A model for spectral dependence of albedo for multicomponent regolith-like surfaces. Solar System Res. 30, 258–264 (1996)

    Google Scholar 

  • Starukhina, L.V., Shkuratov, Y.G.: The lunar poles: water ice or chemically trapped hydrogen? Icarus 147, 585–587 (2000)

    Article  Google Scholar 

  • Starukhina, L.V., Shkuratov, Y.G.: Swirls on the Moon and Mercury: meteoroid swarm encounters as a formation mechanism. Icarus 167, 136–147 (2004)

    Article  Google Scholar 

  • Starukhina, L.V., Shkuratov, Y.G.: Simulation of 3μm absorption band in lunar spectra: water or solar wind induced hydroxyl? Lunar and Planetary Science 41, LPI, Houston, abstract #1385 (2010)

    Google Scholar 

  • Stern, S.A.: The lunar atmosphere: History, status, current problems, and context. Rev. Geophys. 37, 453–491 (1999)

    Article  Google Scholar 

  • Sunshine, J.M., Farnham, T.L., Feaga, L.M., Groussin, O., Merlin, F., Milliken, R.E., A’Hearn, M.F.: Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft. Science 326, 565–568 (2009)

    Article  Google Scholar 

  • Taylor, L.A., Rossman, G.R., Qi, Q.: Where has all the lunar water gone? Lunar Planet. Sci. 26, LPI, Houston, 1399–1400 (1995)

    Google Scholar 

  • Vasavada, A.R., Paige, D.A., Wood, E.S.: Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus 141, 179–193 (1999)

    Article  Google Scholar 

  • Watson, K., Murray, B.C., Brown, H.: The behavior of volatiles on the lunar surface. J. Geophys. Res. 66, 3033–3045 (1961)

    Article  Google Scholar 

  • Zeller, E.J., Ronca, L.B., Levy, P.W.: Proton-induced hydroxyl formation on the lunar surface. J. Geophys. Res. 71, 4855–4860 (1966)

    Google Scholar 

  • Zent, A.P., Ichimura, A.I., McCord, T.B., Taylor, L.A.: Production of OH/H2O in lunar samples via proton bombardment. Lunar Planet. Sci. 41, LPI, Houston, abstract # 2665 (2010)

    Google Scholar 

  • Ziegler, J.F., Biersack, J.P., Littmark, U.: The Stopping and Range of Ions in Solids. Pergamon Press, New York (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Starukhina, L. (2012). Water on the Moon: What Is Derived from the Observations?. In: Badescu, V. (eds) Moon. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27969-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27969-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27968-3

  • Online ISBN: 978-3-642-27969-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics