Skip to main content

arNOX: New Mechanisms of Skin Aging and Lipoprotein Oxidation

  • Living reference work entry
  • First Online:
Textbook of Aging Skin
  • 295 Accesses

Abstract

The discovery of a family of cell surface age-related ECTO-NOX proteins, designated as arNOX or ENOX3 capable of generating superoxide which can then dismutase to form hydrogen peroxide as well as the directly oxidized tyrosines and protein thiols, has led to new mechanisms of skin aging applicable, as well, to lipoprotein oxidation and atherogenesis. The arNOX proteins are shed from the cell surface where they enter body fluids and permeate interstitial spaces as a major contributor to skin aging. As introduced in an accompanying chapter, arNOX proteins increase with age beginning about age 30 to a maximum by about age 60. Their activity is reversibly blocked by coenzyme Q and by a variety of herbal infusions including savory, estragon, basil, marjoram, rosemary, and sage as well as their phenolic constituents such as gallic acid. As staples of the French diet, these herbal sources of safe and effective arNOX inhibitors offer a possible explanation for the French paradox of reduced atherogenic risk despite a cholesterol-rich diet high in butter and cheese. Formation of malondialdehyde-like products involved in serum lipoprotein oxidation correlates with arNOX levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hensley K, Maidt ML, Yu Z, Sang H, Markesbery WR, Floyd RA. Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci. 1998;18:8126–32.

    PubMed  CAS  Google Scholar 

  2. Smith CD, Carney JM, Starke-Reed PO, Oliver CN, Stadtman FR, Floyd RA, Markesbery WR. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci U S A. 1991;88:10540–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Smith CD, Carney JM, Tatsumo T, Stadtman FR, Floyd RA, Markesbery WR. Protein oxidation in aging brain. Ann N Y Acad Sci. 1992;663:110–9.

    Article  PubMed  CAS  Google Scholar 

  4. Stadtman ER, Starke-Reed PE, Oliver CN, Carney JM, Floyd RA. Protein modification in aging. EXS. 1992;62:64–72.

    PubMed  CAS  Google Scholar 

  5. Leeuwenburgh C, Hansen P, Shaish A, Holloszy JO, Heinecke JW. Markers of protein oxidation by hydroxyl radical and reactive nitrogen species in tissues of aging rats. Am J Physiol. 1998;274:453–61.

    Google Scholar 

  6. Nohl H, Kozlov V, Staniek K, Gille L. The multiple functions of coenzyme Q. Bioorg Chem. 2001;29:1–13.

    Article  PubMed  CAS  Google Scholar 

  7. Nohl H, Gille L, Staniek K. Intracellular generation of reactive oxygen species by mitochondria. Biochem Pharmacol. 2005;69:719–23.

    Article  PubMed  CAS  Google Scholar 

  8. St. Pierre J, Buckingham J, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem. 2002;277:44784–90.

    Article  PubMed  CAS  Google Scholar 

  9. Linnane AW, Kios M, Vitetta L. Healthy aging: regulation of the metabolome by cellular redox modulation and prooxidant signaling systems: the essential roles of superoxide anion and hydrogen peroxide. Biogerentology. 2007;8:445–67.

    Article  CAS  Google Scholar 

  10. Morré DM, Lenaz G, Morré DJ. Surface oxidase and oxidative stress propagation in aging. J Exp Biol. 2000;203:1513–21.

    PubMed  Google Scholar 

  11. Rehmus WE, Kern D, Janjua R, Morré DM, Morré DJ, Knaggs H. Appearance of skin ageing in healthy women. Correlation with arNOX levels: a potential new mechanism in ageing? Clin Dermatol Retin Other Treat. 2008;24:52–6.

    CAS  Google Scholar 

  12. Morré DJ, Morré DM, Shelton TB. Aging-related nicotinamide adenine dinucleotide oxidase response to dietary supplementation: the French paradox revisited. Rejuvenation Res. 2010;13:159–61.

    Article  PubMed  CAS  Google Scholar 

  13. Reznik AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;223:357–63.

    Article  Google Scholar 

  14. Terada T, Takada K, Yamanishi H, Ashida Y. Inhibitory effects of coenzyme Q10 on skin aging. In: Abstracts, 5th conference of the International Coenzyme Q10 Association. Kobe; 2007. p. 156.

    Google Scholar 

  15. Morré DM, Morré DJ, Rehmus W, Kern D. Supplementation with CoQ10 lowers age-related (ar) NOX levels in healthy subjects. Biofactors. 2008;32:221–30.

    Article  PubMed  Google Scholar 

  16. Meadows C, Morré DJ, Morré DM, Draelos ZD, Kern DG. Age-related NADH oxidase (arNOX) catalyzed oxidative damage to skin proteins. Arch Dermatol Res. 2014;306:645–52.

    Article  PubMed  CAS  Google Scholar 

  17. van der Vlies D, Wirtz KWA, Pap EHW. Detection of protein oxidation in rat-1 fibroblasts by fluorescently labeled tyramine. Biochemistry. 2001;40:7783–8.

    Article  PubMed  CAS  Google Scholar 

  18. Kern DG, Draelos ZD, Meadows C, Morré DM, Morré DJ. Controlling reactive oxygen species in skin at their source to reduce skin aging. Rejuvenation Res. 2010;13:165–7.

    Article  PubMed  CAS  Google Scholar 

  19. Sorkin DL, Duong DK, Miller AF. Mutation of tyrosine 34 to phenylalanine eliminates the active site pK or reduced iron-containing superoxide dismutase. Biochemistry. 1997;36:368202–8.

    Google Scholar 

  20. MacMillan-Crow LA, Crow JP, Thompson JA. Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry. 1998;37:1613–22.

    Article  PubMed  CAS  Google Scholar 

  21. Xu S, Ying J, Jiang B, Guo W, Adachi T, Sharov V, Lazar H, Menzoian J, Knyushko TV, Bigelow D, Schöneich C, Cohen RA. Detection of sequence-specific tyrosine nitration of manganese SOD and SERCA in cardiovascular disease and aging. Am J Physiol Heart Circ Physiol. 2006;290:H2220–7.

    Article  PubMed  CAS  Google Scholar 

  22. Schmuck A, Fuller CJ, Devaraj S, Jialal I. Effect of aging on susceptibility of low density lipoproteins to oxidation. Clin Chem. 1995;41:1628–32.

    PubMed  CAS  Google Scholar 

  23. Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem. 1997;272:20963–6.

    Article  PubMed  CAS  Google Scholar 

  24. Kern D, Draelos ZD, Morré DM, Morré DJ. Age-related oxidase (arNOX) activity of epidermal punch biopsies correlate with subject age and arNOX activities of serum and saliva. In: Abstracts, Society Investigative Dermatology. Kobe; 2008.

    Google Scholar 

  25. Morré DJ, Morré DM. Aging related cell surface ECTO-NOX protein, arNOX, a preventive target to reduce atherogenic risk in the elderly. Rejuvenation Res. 2006;9:231–6.

    Article  PubMed  Google Scholar 

  26. Morré DJ, Kern D, Meadows C, Knaggs H, Morré DM. Age-related surface oxidases shed into body fluids as targets to prevent skin aging and reduce cardiovascular risk. World J Cardiovasc Dis. 2014;4:119–29.

    Article  CAS  Google Scholar 

  27. Gillotte KL, Hörkkö S, Witztum JL, Steinberg D. Oxidized phospholipids, linked to apolipoprotein B of oxidized LDL, are ligands for macrophage scavenger receptors. J Lipid Res. 2000;41:824–33.

    PubMed  CAS  Google Scholar 

  28. Morré DM, Morré DJ. Coenzyme Q and lipid oxidation in aging and cardiovascular disease. In: Abstracts, 41st annual south eastern regional lipid conference. Cashiers;2006. 1–3 Nov 2006, p. 68.

    Google Scholar 

  29. Ades LMC, Morré DM, Morré DJ. Age related NADH oxidase (arNOX). Potential link between cancer and reduced cardiovascular risk. J Life Med. 2013;1:38–40.

    Article  CAS  Google Scholar 

  30. Talbert E, Bodnar A, Morré DM, Morré DJ. Age-related NADH oxidase (arNOX) activity is significantly reduced in coelomic fluid of long-lived sea urchins. Int Aquat Res. 2013;5(2):1–7.

    Google Scholar 

  31. Morré DM, Guo F, Morré DJ. An aging-related cell surface NADH oxidase (arNOX) generates superoxide and is inhibited by coenzyme Q. Mol Cell Biochem. 2003;264:101–9.

    Article  Google Scholar 

  32. Ichihashi M, Ooe M, Inui M, Omura K, Fugi K. Efficacy evaluation of coenzyme Q10 in aged human skin in vivo. In: Abstracts, 5th conference of the International Coenzyme Q10 Association. Kobe;2007. p. 88.

    Google Scholar 

  33. Hoppe U, Bergemann J, Dienbeck W, Ennen J, Gohla S, Harris L, Jacob J, Kielholz J, Mei W, Pollet D, Schachtschabel G, Sauermann G, Schreiner V, Staband F, Steckel F. Coenzyme Q10, a cutaneous antioxidant and energizer. Biofactors. 1999;9:371–8.

    Article  PubMed  CAS  Google Scholar 

  34. Teissedre PL, Waterhouse AL. Inhibition of oxidation of human low density lipoproteins by phenolic substances in different essential ils varieties. J Agric Food Chem. 2000;48:3801–5.

    Article  PubMed  CAS  Google Scholar 

  35. Forman JJ, Maiorino M, Ursini F. Signaling functions of reactive oxygen species. Biochemistry. 2010;49:835–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Del Principe D, Lista P, Malorni W, Giammarioli AM. Fibroblast autophagy in fibrotic disorders. J Pathol. 2013;229:208–20.

    Article  PubMed  CAS  Google Scholar 

  37. Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD. Homologs of gp92phox: cloning and tissue expression of NOX3, Nox4, and NOX5. Gene. 2001;269:131–40.

    Article  PubMed  CAS  Google Scholar 

  38. Sumimoto H. Structure, regulation and evolution of NOX-family NADPH oxidases that produce reactive oxygen species. FEBS. 2008;1175:3249–77.

    Article  CAS  Google Scholar 

  39. Clark RA, Volpp BD, Leidal KG, Nauseef WM. Translocation of cytosolic components of neutrophil NADPH oxidase. Trans Assoc Am Physicians. 1989;102:224–30.

    PubMed  CAS  Google Scholar 

  40. Nauseef WM. Biological roles for the NOX family NADPH oxidases. J Biol Chem. 2008;283:16961–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Morré .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Morré, D.J., Morré, D.M. (2015). arNOX: New Mechanisms of Skin Aging and Lipoprotein Oxidation. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_115-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_115-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics