Skip to main content

Advertisement

Log in

Healthy aging: regulation of the metabolome by cellular redox modulation and prooxidant signaling systems: the essential roles of superoxide anion and hydrogen peroxide

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) has long been proposed as leading to random deleterious modification of macromolecules with an associated progressive development of age associated systemic disease. ROS and RNS formation has been posited as a major contributor to the aging process. On the contrary, this review presents evidence that superoxide anion (and hydrogen peroxide) and nitric oxide (and peroxynitrite) constitute regulated prooxidant second messenger systems, with specific sub-cellular locales of production and are essential for normal metabolome and physiological function. The role of these second messengers in the regulation of the metabolome is discussed in terms of radical formation as an essential contributor to the physiologically normal regulation of sub-cellular bioenergy systems; proteolysis regulation; transcription activation; enzyme activation; mitochondrial DNA changes; redox regulation of metabolism and cell differentiation; the concept that orally administered small molecule antioxidant therapy is a chimera. The formation of superoxide anion/hydrogen peroxide and nitric oxide do not conditionally lead to random macromolecular damage; under normal physiological conditions their production is actually regulated consistent with their second messenger roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida A, Cidad P, Delgado-Esteban M, Fernandez E, Garcia-Nogales P, Bolanos JP (2005) Inhibition of mitochondrial respiration by nitric oxide: its role in glucose metabolism and neuroprotection. J Neurosci Res 79:166–171

    Article  PubMed  CAS  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants and the degenerative diseases of aging. Proc Natl Acad Sci U S A 90:7915–7922

    Article  PubMed  CAS  Google Scholar 

  • Arzumanian V, Stankevicius E, Laukeviciene A, Kevelaitis E (2003) Mechanisms of nitric oxide synthesis and action in cells. Medicina 39:535–541

    PubMed  Google Scholar 

  • Bailey DM, Raman S, McEnery J, Young IS, Parham KL, Hullin DA, Davies B, McKeeman G, McCord JM, Lewis MH (2006) Vitamin C prophylaxis promotes oxidative lipid damage during surgical ischemia-reperfusion. Free Radic Biol Med 40:591–600

    Article  PubMed  CAS  Google Scholar 

  • Bell EL, Emerling BB, Chandel NS (2005) Mitochondrial regulation of oxygen sensing. Mitochondrion 5:322–333

    Article  PubMed  CAS  Google Scholar 

  • Bjelakovic G, Nikolova D, Simonetti RG, Gluud C (2004) Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis. Lancet 364:1219–1228

    Article  PubMed  CAS  Google Scholar 

  • Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: Systematic review and meta-analysis. JAMA 297:842–857

    Article  PubMed  CAS  Google Scholar 

  • Boveris A, Nozomu O, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128:617–630

    PubMed  CAS  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. Biochem J 134:707–716

    PubMed  CAS  Google Scholar 

  • Brightman AO, Wang J, Miu RK, Sun LI, Barr R, Crane FL, Morre DJ (1992) A growth factor and hormone stimulated NADH oxidase from rat liver plasma membrane. Biochim Biophys Acta 1105:109–117

    Article  PubMed  CAS  Google Scholar 

  • Celmeti E, Nisoli E (2005) Nitric oxide and mitochondrial biogenesis: a key to long-term regulation of cellular metabolism. Comp Biochem Physiol A Mol Integr Physiol 142:102–110

    Article  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  • Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR, Shacter E, Levine M 2005 Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci U S A 102:13604–13609

    Article  PubMed  CAS  Google Scholar 

  • Cohen RA, Adachi T (2006) Nitric-oxide-induced vasodilatation regulation by physiologic S-glutathiolation and pathologic oxidation of the sarcoplasmic endoplasmic reticulum calcium ATPase. Trends Cardiovasc Med 16:109–114

    Article  PubMed  CAS  Google Scholar 

  • Crane FL, Sun IL, Crowe RA, Alcain FJ, Low H (1994a) Coenzyme Q10 in Gogli apparatus membrane redox activity and proton uptake. In: Folkers K, Yamamura Y (eds) Biomedical and clinical aspects of coenzyme Q10, vol 4. Elsevier, Amsterdam, pp 77–85

    Google Scholar 

  • Crane FL, Sun IL, Crowe RA, Alcain FJ, Low H (1994b) Coenzyme Q10, plasma membrane oxidase and growth control. Mol Aspects Med 15(Suppl):1–11

    Article  Google Scholar 

  • Crane FL, Low H (2005) Plasma membrane redox control of sirtuin. Age 27:147–152

    Article  CAS  Google Scholar 

  • Darnell JE Jr (1998) Studies of IFN-induced transcriptional activation uncover the Jak-Stat pathway. J Interferon Cytokine Res 18:549–554

    Article  PubMed  CAS  Google Scholar 

  • Echtay KS, Winkler E, Klingenberg M (2000) Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature 408:609–613

    Article  PubMed  CAS  Google Scholar 

  • Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC, Brand MD (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415:96–99

    Article  PubMed  CAS  Google Scholar 

  • Farout L, Friguet B (2006) Proteasome function in aging and oxidative stress: implications in protein maintenance failure. Antioxid Redox Signal 8:205–216

    Article  PubMed  CAS  Google Scholar 

  • Flood DG, Reaume JA, Hoffman EK, Hirsch JD, Lin Y, Dorfman KS, Scott RW (1999) Hindlimb motor neurons require Cu/Zn superoxide dismutase for maintenance of neuromuscular junctions. Am J Pathol 155:663–672

    PubMed  CAS  Google Scholar 

  • Gaut JP, Belaaouaj A, Byun J, Roberts LJ, Maeda N, Frei B, Heinecke JW (2006) Vitamin C fails to protect amino acids and lipids from oxidation during acute inflammation. Free Radic Biol Med 40:1494–1501

    Article  PubMed  CAS  Google Scholar 

  • Gille L, Nohl H (2000) The existence of a lysosomal redox chain and the role of ubiquinone. Arch Biochem Biophys 375:347–354

    Article  PubMed  CAS  Google Scholar 

  • Grabe M, Oster G (2001) Regulation of organelle acidity. J Gen Physiol 117:329–344

    Article  PubMed  CAS  Google Scholar 

  • Grote M, Luchtefeld M, Schieffer B (2005) JANUS under stress—role of JAK/STAT signaling pathway in vascular diseases. Vasc Pharmacol 43:357–363

    Article  CAS  Google Scholar 

  • Guix FX, Uribesalgo I, Coma M, Munoz FJ (2005) The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76:126–152

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1982) Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts is a feasible source of hydroxy radicals in vivo. Biochem J 205:461–463

    PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    PubMed  CAS  Google Scholar 

  • Helbock HJ, Beckman KB, Shigenaga MK, Walter PB, Woodall AA, Yeo HC, Ames BN (1998) DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc Natl Acad Sci U S A 95:288–293

    Article  PubMed  CAS  Google Scholar 

  • Hornig D (1975) Distribution of ascorbic acid, metabolites and analogues in man and animals. Ann N Y Acad Sci 258:103–118

    Article  PubMed  CAS  Google Scholar 

  • Huang LE, Arany Z, Livingston DM, Bunn HF (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 271:32253–32259

    Article  PubMed  CAS  Google Scholar 

  • Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 95:7987–7992

    Article  PubMed  CAS  Google Scholar 

  • Husom AD, Peters EA, Kolling EA, Fugere NA, Thompson LV, Ferrington DA (2004) Altered proteasome function and subunit composition in aged muscle. Arch Biochem Biophys 421:67–76

    Article  PubMed  CAS  Google Scholar 

  • Jaarsma D, Haasdijk ED, Grashorn JA, Hawkins R, Van Duijn W, Verspageth HW, London J, Holstege JC (2000) Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiol Dis 7:623–643

    Article  PubMed  CAS  Google Scholar 

  • Kallio PJ, Wilson WJ, O’Brien S, Makino Y, Poellinger L (1999) Regulation of the hypoxia-inducible transcription factor 1 alpha by the ubiquitin-proteasome pathway. J Biol Chem 274:6519–6525

    Article  PubMed  CAS  Google Scholar 

  • Kopsidas G, Kovalenko SA, Heffernan DR, Yarovaya N, Kramarova L, Stojanovski D, Borg J, Islam MM, Caragounis A, Linnane AW (2000) Tissue mitochondrial DNA changes. A stochastic system. Ann N Y Acad Sci 908:226–243

    Article  PubMed  CAS  Google Scholar 

  • Kopsidas G, Zhang C, Yarovaya N, Kovalenko S, Graves S, Richardson M, Linnane AW (2002) Stochastic mitochondrial DNA changes: bioenergy decline in type I skeletal muscle fibres correlates with a decline in the amount of amplifiable full-length mtDNA. Biogerontology 3:29–36

    Article  PubMed  CAS  Google Scholar 

  • Kovalenko SA, Kopsidas G, Islam MM, Heffernan D, Fitzpatrick J, Caragounis A, Gingold E, Linnane AW (1998) The age-associated decrease in the amount of amplifiable full-length mitochondrial DNA in human skeletal muscle. Biochem Mol Biol Int 46:1233–1241

    PubMed  CAS  Google Scholar 

  • Larm JA, Vaillant F, Linnane AW, Lawen A (1994) Up-regulation of the plasma membrane oxidoreductase as a prerequisite for the viability of human namalwa ρ0 cells. J Biol Chem 184:173–180

    Google Scholar 

  • Lawen A, Martinus RD, McMullen GL, Nagley P, Vaillant EJ, Wolvetang EJ, Linnane AW (1994) The universality of bioenergetic disease: the role of mitochondrial mutation and the putative inter-relationship between mitochondria and plasma membrane NADH oxidoreductase. Mol Aspects Med 15:s13–s27

    Article  PubMed  CAS  Google Scholar 

  • Leusen JH, de Klein A, Hilarius PM, Ahlin A, Palmblad J, Smith CI, Diekmann D, Hall A, Verhoeven AJ, Roos D (1996) Disturbed interaction of p21-rac with mutated p67-phox causes chronic granulomatous disease. J Exp Med 184(4):1243–1249

    Article  PubMed  CAS  Google Scholar 

  • Li S, Taylor KB, Kelly SJ, Jedrzejas MJ (2001) Vitamin C inhibits the enzymatic activity of Streptococcus pneumoniae hyaluronate lyase. J Biol Chem 276:15125–15130

    Article  PubMed  CAS  Google Scholar 

  • Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as a major contributor to aging and degenerative diseases. Lancet 333:642–645

    Article  Google Scholar 

  • Linnane AW, Kopsidas G, Zhang C, Yarovaya N, Kovalenko S, Papakostopoulos P, Eastwood H, Graves S, Richardson M, (2002a) Cellular redox activity of coenzyme Q10: effect of CoQ10 supplementation on human skeletal muscle. Free Radic Res 36:445–453

    Article  CAS  Google Scholar 

  • Linnane AW, Zhang C, Yarovaya N, Kopsidas G, Kovalenko S, Papakostopoulos P, Eastwood H, Grave S, Richardson M (2002b) Human aging and global function of coenzyme Q10. Ann N Y Acad Sci 959:396–411

    Article  CAS  Google Scholar 

  • Linnane AW, Eastwood H (2004) Cellular redox poise modulation; the role of coenzyme Q10, gene and metabolic regulation. Mitochondrion 4:779–789

    Article  PubMed  CAS  Google Scholar 

  • Linnane AW, Eastwood H (2006) Cellular redox regulation and prooxidant signaling systems. A new perspective on the free radical theory of aging. Ann N Y Acad Sci 1067:47–55

    Article  PubMed  CAS  Google Scholar 

  • Linnane AW, Kios M, Vitetta L (2007) The essential roles of superoxide radical and nitric oxide formation for healthy aging. Mitochondrion 7:1–5

    Article  PubMed  CAS  Google Scholar 

  • Mansouri A, Muller FL, Liu Y, Ng R, Faulkner J, Hamilton M, Richardson A, Huang T, Epstein CJ, Van Remmen H (2006) Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging. Mech Aging Dev 127:298–306

    Article  PubMed  CAS  Google Scholar 

  • Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, Kloetzel PM, Krüger E (2003) Inhibition of proteasome induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes. J Biol Chem 278:21517–21525

    Article  PubMed  CAS  Google Scholar 

  • Melov S, Schneider JA, Day BJ, Hinerfeld D, Coskun P, Mirra SS, Crapo JD, Wallace DC (1998) A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nat Genet 18:159–163

    Article  PubMed  CAS  Google Scholar 

  • Momken I, Fortin D, Serrurier B, Bigard X, Ventura-Clapier R, Veksler V (2002) Endothelial nitric oxide synthase (NOS) deficiency affects energy metabolism pattern in murine oxidative skeletal muscle. Biochem J 368:341–347

    Article  PubMed  CAS  Google Scholar 

  • Moncada S, Erusalimsky JD (2002) Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 3:214–220

    Article  PubMed  CAS  Google Scholar 

  • Nagley P, Zhang C, Martinus RD, Vaillant F, Linnane AW (1993) Mitochondrial DNA mutation and human aging: molecular biology, bioenergetics and redox therapy. In: DiMauro S, Wallace D (eds) Mitochondrial DNA in human pathology. Raven Press, New York, pp 137–157

    Google Scholar 

  • Nicholls DG, Ferguson SJ (1992) Bioenergetics 2. Academic Press, Harcourt Brace Jovanovich Publishers, San Diego

    Google Scholar 

  • Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S, Carruba MO (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899

    Article  PubMed  CAS  Google Scholar 

  • Nisoli E, Falconi S, Tonello C, Cozzi V, Palomba L, Fiorani M, Pisconti A, Brunelli S, Cardile A, Francolini M, Cantoni O, Carruba MO, Moncada S, Clementi E (2004) Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc Natl Acad Sci U S A 101:16507–16512

    Article  PubMed  CAS  Google Scholar 

  • Nohl H, Kozlov V, Staniek K, Gille L (2001) The multiple functions of coenzyme Q. Bioorg Chem 29:1–13

    Article  PubMed  CAS  Google Scholar 

  • Nohl H, Gille L, Staniek (2005) Intracellular generation of reactive oxygen species by mitochondria. Biochem Pharmacol 69:719–723

    Article  PubMed  CAS  Google Scholar 

  • Persichini T, Mazzone V, Polticelli F, Moreno S, Venturini G, Clementi E, Colasanti M (2005) Mitochondrial type I nitric oxide synthase physically interacts with cytochrome c oxidase. Neurosci Lett 384:254–259

    Article  PubMed  CAS  Google Scholar 

  • Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siweck DF, Wilcox HM, Flood DG, Beal MF, Brown RH Jr, Scott RW, Snider WD (1996) Motor neurons inCu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13:43–47

    Article  PubMed  CAS  Google Scholar 

  • Schieffer B, Luchtefeld M, Braun S, Hilfiker A, Hilfiker-Kleiner D, Drexler H (2000) Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction. Circ Res 87:1195–2001

    PubMed  CAS  Google Scholar 

  • Semenza GL (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology 19:176–182

    Article  PubMed  CAS  Google Scholar 

  • Singel DJ, Stamler JS (2005) Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrohemoglobin. Ann Rev Physiol 67:99–145

    Article  CAS  Google Scholar 

  • Smith J, Ladi E, Mayer-Proschel M, Noble M (2000) Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc Natl Acad Sci U S A 97:10032–10037

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER (2004) Role of oxidant species in aging. Curr Med Chem 11:1105–1112

    PubMed  CAS  Google Scholar 

  • Stolze IP, Mole DR, Ratcliffe PJ (2006) Regulation of HIF: prolyl hydroxylases. Novartis Found Symp 272:15–25

    Article  PubMed  CAS  Google Scholar 

  • St-Pierre J, Buckingham J, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790

    Article  PubMed  CAS  Google Scholar 

  • Sumbayev VV, Yasinska IM (2006) Peroxynitrite as an alternative donor of oxygen in HIF-1alpha proline hydroxylation under low oxygen availability. Free Radic Res 40:631–635

    Article  PubMed  CAS  Google Scholar 

  • Sun IL, Sun EE, Crane FL, Morre DJ, Lindgren A, Low H (1992) Requirement for Coenzyme Q in Plasma Membrane in Electron Transport. Proc Natl Acad Sci U S A 89:11126–11130

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Gao J, Ferrington DA, Biesiada H, Williams TD, Squier TC (1999) Repair of oxidized calmodulin by methionine sulfoxide reductase restores ability to activate the plasma membrane Ca-ATPase. Biochemistry 38:105–112

    Article  PubMed  CAS  Google Scholar 

  • Sundaresan M, Yu Z-X, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduciton. Science 270:296–299

    Article  PubMed  CAS  Google Scholar 

  • Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-Y M, Gidlōf S, Oldfors A, Wibom R, Tōrnell J, Jacobs HT, Larsson N-G (2004) Premature aging in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423

    Article  PubMed  CAS  Google Scholar 

  • Trifunovic A, Hansson A, Wredenberg A, Rovio AT, Dufour E, Khvorostov I, Spelbrink JN, Wibom R, Jacobs HT, Larsson N-G (2005) Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci U S A 102:17993–17998

    Article  PubMed  CAS  Google Scholar 

  • Urbe S (2005) Ubiquitin and endocytic protein sorting. Essays Biochem 41:81–98

    PubMed  CAS  Google Scholar 

  • Voet D, Voet JD (2004) Biochemistry, 3rd edn. John Wiley and Sons, New Jersey USA, pp 1094–1096

    Google Scholar 

  • Wallace DC, Bohr VA, Cortopassi G, Kadenbach B, Linn S, Linnane AW, Richter C, Shay JW (1995) Group Report: bioenergetics and mitochondrial DNA mutations in aging and age related diseases. In: Esser K, Martin GM (eds) Molecular aspects of aging. John Wiley, Chichester, pp 199–225

    Google Scholar 

  • Wallace DC, Lott MT (1999) Mitochondrial bioenergetics and reactive oxygen species in degenerative diseases and aging. In: Bohr VA, Clark BFC, Stevnsner T (eds) Molecular biology of aging. Munksgaard, Copenhagen, pp 125–147

    Google Scholar 

  • Wang FS, Wang CJ, Sheen-Chen SM, Kuo YR, Chen RF, Yang KD (2002) Superoxide mediates shock wave induction of ERK-dependent osteogenic transcription factor (CBFA1) and mesenchymal cell differentiation toward osteoprogenitors. J Biol Chem 277:10931–10937

    Article  PubMed  CAS  Google Scholar 

  • Wang FS, Wang CJ, Chen YJ, Chang PR, Huang YT, Sun YC, Huang HC, Yang YJ, Yang KD (2004) Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1alpha and VEGF-A expression in shock wave-stimulated osteoblasts. J Biol Chem 279:10331–10337

    Article  PubMed  CAS  Google Scholar 

  • Werner E (2004) GTPases and reactive oxygen species: switches for killing and signaling. J Cell Sci 117:149–153

    Article  CAS  Google Scholar 

  • Willcox DC, Willcox BJ, Todoriki H, Curb JD, Suzuki M (2006) Caloric restriction and human longevity: what can we learn from the Okinawans? Biogerontology 7:173–177

    Article  PubMed  Google Scholar 

  • Yin D, Sun H, Weaver RF, Squier TC (1999) Nonessential role for methionines in the productive association between calmodulin and the plasma membrane Ca-ATPase. Biochemistry 38:13654–13660

    Article  PubMed  CAS  Google Scholar 

  • Yin D, Kuczera K, Squier TC (2000) The sensitivity of carboxyl-terminal methionines in calmodulin isoforms to oxidation by H2O2 modulates the ability to activate the plasma membrane Ca-ATPase. Chem Res Toxicol 13:103–110

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony William Linnane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linnane, A.W., Kios, M. & Vitetta, L. Healthy aging: regulation of the metabolome by cellular redox modulation and prooxidant signaling systems: the essential roles of superoxide anion and hydrogen peroxide. Biogerontology 8, 445–467 (2007). https://doi.org/10.1007/s10522-007-9096-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-007-9096-4

Keywords

Navigation