Skip to main content

Genetic Modification in Dedicated Bioenergy Crops and Strategies for Gene Confinement

  • Chapter
  • First Online:
Plant Biotechnology for Sustainable Production of Energy and Co-products

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 66))

Abstract

Genetic modification of dedicated bioenergy crops is in its infancy; however, there are numerous advantages to the use of these tools to improve crops used for biofuels. Potential improved traits through genetic engineering (GE) include herbicide resistance, pest-, drought-, cold- and salt-tolerance, lower inputs, compositional alterations, addition of cellulases and other biofuels-specific traits such as increased biomass yields and increased photosynthetic efficiencies. To achieve these goals on an agricultural scale, these improvements must meet regulatory standards for release into the environment. In most cases, these criteria will probably require gene confinement strategies to prevent gene flow into wild and non-transgenic populations. Here, we consider the options for prevention or mitigation of gene flow in genetically modified (GM) biofuels crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert H, Dale EC, Lee E, Ow D (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659

    Article  PubMed  CAS  Google Scholar 

  • Altieri M (2000) The ecological impacts of transgenic crops on agroecosystem health. Ecosyst Health 6:13–23

    Google Scholar 

  • Bayley CC, Morgan M, Dale EC, Ow D (1992) Exchange of gene activity in transgenic plants catalyzed by the Cre-lox site-specific recombination system. Plant Mol Biol 18:353–361

    Article  PubMed  CAS  Google Scholar 

  • Belanger FC, Meagher TR, Day PR, Plumley K, Meyer WA (2003) Interspecific hybridization between Agrostis stolonifera and related Agrostis species under field conditions. Crop Sci 43:240–246

    Article  Google Scholar 

  • Boffey TB, Veevers A (1977) Balanced designs for two-component competition experiments. Euphytica 26:481–484

    Article  Google Scholar 

  • Bradford KJ, Van Deynze A, Gutterson N, Parrott W, Strauss SH (2005) Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nat Biotechnol 23:439–444

    Article  PubMed  CAS  Google Scholar 

  • Dale EC, Ow DW (1990) Intra- and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene 91:79–85

    Article  PubMed  CAS  Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88:10558–10562

    Article  PubMed  CAS  Google Scholar 

  • Dale PJ (1993) The release of transgenic plants into agriculture. J Agric Sci 120:1–5

    Article  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    Article  PubMed  CAS  Google Scholar 

  • De Block M, Debrouwer D, Moens T (1997) The development of nuclear male sterility system in wheat: expression of the barnase gene under the control of tapetum specific promoters. Theor Appl Genet 95:125–131

    Article  Google Scholar 

  • De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74

    Article  PubMed  Google Scholar 

  • Dunwell J, Ford CS (2005) Technologies for biological containment of GM and non-GM crops. DEFRA Contract CPEC 47, http://www.gmo-safety.eu/pdf/biosafenet/Defra_2005.pdf

    Google Scholar 

  • Goetz M, Godt DE, Guivarc’h A, Kahmann U, Chriqui D, Roitsch T (2001) Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc Natl Acad Sci USA 98:6522–6527

    Article  PubMed  CAS  Google Scholar 

  • Hanson DD, Hamilton DA, Travis JL, Bashe DM, Mascarenhas JP (1989) Characterization of a pollen-specific cDNA clone from Zea mays and its expression. Plant Cell 1:173–179

    PubMed  CAS  Google Scholar 

  • Hartley RW (1988) Barnase and Barstar: expression of its cloned inhibitor permits expression of a cloned ribonuclease. J Mol Biol 202:913–915

    Article  PubMed  CAS  Google Scholar 

  • He S, Abad AR, Gelvin SB, Mackenzie SA (1996) A cytoplasmic male sterility-associate mitochondrial protein causes pollen disruption in transgenic tobacco. Proc Natl Acad Sci USA 93:11763–11768

    Article  PubMed  CAS  Google Scholar 

  • Higginson T, Li SF, Parish RW (2003) AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J 35:177–192

    Article  PubMed  CAS  Google Scholar 

  • Jagannath A, Bandyopadhyay P, Arumugam N, Gupta V, Kumar P, Pental D (2001) The use of spacer DNA fragment insulates the tissue-specific expression of a cytotoxic gene (barnase) and allows high-frequency generation of transgenic male sterile lines in Brassica juncea L. Mol Breed 8:11–23

    Article  CAS  Google Scholar 

  • Lee J-Y, Aldemita RR, Hodges TK (1996) Isolation of a tapetum-specific gene and promoter from rice. Int Rice Res Newsl 21:2–3

    Google Scholar 

  • Luo H, Lyznik LA, Gidoni D, Hodges TK (2000) FLP-mediated recombination for use in hybrid plant production. Plant J 23:423–430

    Article  PubMed  CAS  Google Scholar 

  • Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007) "GM-gene-deletor": fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 5:263–374

    Article  PubMed  CAS  Google Scholar 

  • Mallory-Smith C, Zapiola ML (2008) Gene flow from glyphosate-resistant crops. Pest Manag Sci 64:428–440

    Article  PubMed  CAS  Google Scholar 

  • Mariani C, Beuckeleer M, Truettner J, Leemans J, Goldberg R (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 374:737–738

    Article  Google Scholar 

  • Moffatt B, Somerville C (1988) Positive selection for male-sterile mutants of Arabidopsis lacking adenine phosphoribosyl transferase activity. Plant Physiol 86:1150–1154

    Article  PubMed  CAS  Google Scholar 

  • Oliver MJ, Quisenberry JE, Trolinder N, Glover L, Keim DL (1998) Control of plant gene expression. US Patent 5723765. United States Patent and Trademarks Office, http://www.patentstorm.us/patents/5723765.html

    Google Scholar 

  • Oliver MJ, Quisenberry JE, Trolinder N, Glover L, Keim DL (1999a) Control of plant gene expression. US Patent 5977441. United States Patent and Trademarks Office, http://www.patentstorm.us/patents/5977441.html

    Google Scholar 

  • Oliver MJ, Quisenberry JE, Trolinder N, Glover L, Keim DL (1999b) Control of plant gene expression. US Patent 5925808. United States Patent and Trademarks Office, http://www.patentstorm.us/patents/5925808.html

    Google Scholar 

  • Reichman JR, Watrud LS, Lee EH, Burdick CA, Bollman MA, Storm MJ, King GA, Mallory-Smith C (2006) Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats. Mol Ecol 15:4243–4255

    Article  PubMed  CAS  Google Scholar 

  • Robertson GP, Dale VH, Doering OC, Hamburg SP, Melillo JM, Wander MM, Parton WJ, Adler PR, Barney JN, Cruse RM, Duke CS, Fearnside PM, Follett RF, Gibbs HK, Goldemberg J, Mladenoff DJ, Ojima D, Palmer MW, Sharpley A, Wallace L (2008) Sustainable biofuels redux. Science 322:49–50

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Karcher D, Bock R (2007) Determining the transgene containment level provided by chloroplast transformation. Proc Natl Acad Sci USA 104:6998–7002

    Article  PubMed  CAS  Google Scholar 

  • Snow AA, Moran Palma P (1997) Commercialization of transgenic plants: potential ecological risks. BioScience 47:86–96

    Article  Google Scholar 

  • Stegemann S, Hartmann S, Ruf S, Bock R (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100:8828–8833

    Article  PubMed  CAS  Google Scholar 

  • Stewart CN (2007) Biofuels and biocontainment. Nat Biotechnol 25:283–284

    Article  PubMed  CAS  Google Scholar 

  • Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443

    Article  PubMed  CAS  Google Scholar 

  • Theerakulpisut P, Xu H, Singh MB, Pettitt JM, Knox RB (1991) Isolation and developmental expression of Bcp1, an anther-specific cDNA clone in Brassica campestris. Plant Cell 3:1073–1084

    PubMed  CAS  Google Scholar 

  • Tomes DT, Huang B, Miller PD (1998) Genetic constructs and methods for producing fruits with very little or diminished seed. US Patent 5773697, http://www.freepatentsonline.com/5773697.html

    Google Scholar 

  • Tsuchiya T, Toriyama K, Yoshikawa M, Ejiri S, Hinata K (1995) Tapetum-specific expression of the gene for an endo-beta-1,3-glucanase causes male sterility in transgenic tobacco. Plant Cell Physiol 36:487–494

    PubMed  CAS  Google Scholar 

  • Twell D, Wing R, Yamaguchi J, McCormick S (1989) Isolation and expression of an anther-specific gene from tomato. Mol Gen Genet 217:240–245

    Article  PubMed  CAS  Google Scholar 

  • Watrud LS, Lee EH, Fairbrother A, Burdick C, Reichman JR, Bollman M, Storm M, King G, van De Waters, PK (2004) Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc Natl Acad Sci USA 101:14533–14538

    Article  PubMed  CAS  Google Scholar 

  • Wipff JK, Fricker C (2001) Gene flow from transgenic creeping bentgrass (Agrostis stolonifera L.) in the Willamette Valley, Oregon. Int Turfgrass Soc Res J 9:224–242

    Google Scholar 

  • Xu H, Knox RB, Taylor PE, Singh MB (1995) Bcp1, a gene required for male fertility in Arabidopsis. Proc Natl Acad Sci USA 92:2106–2110

    Article  PubMed  CAS  Google Scholar 

  • Yui R, Iketani S, Mikami T, Kubo T (2003) Antisense inhibition of mitochondrial pyruvate dehydrogenase E1α subunit in anther tapetum causes male sterility. Plant J 34:57–66

    Article  PubMed  CAS  Google Scholar 

  • Zapiola ML, Campbell CK, Butler MD, Mallory-Smith CA (2008) Escape and establishment of transgenic glyphosate-resistant creeping bentgrass Agrostis stolonifera in Oregon, USA: a 4-year study. J Appl Ecol 45:486–494

    Article  Google Scholar 

  • Zapiola ML, Mallory-Smith CA, Thompson JH, Rue LJ, Campbell CK, Butler MD (2007) Gene escape from glyphosate-resistant creeping bentgrass fields: past, present, and future. Proceedings of the 60th Meeting of the Western Society of Weed Science, 13–15 March 2007, Portland, OR, Abstract 82

    Google Scholar 

  • Zuo J, Chua NH (2000) Chemical-inducible systems for regulated expression of plant genes. Curr Opin Biotechnol 11:146–151

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Niu QW, Chua NH (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24:265–273

    Article  PubMed  CAS  Google Scholar 

  • Zou JT, Zhan XY, Wu HM, Wang H, Cheung AY (1994) Characterization of a rice pollen-specific gene and its expression. Am J Bot 81:552–561

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert P. Kausch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kausch, A.P. et al. (2010). Genetic Modification in Dedicated Bioenergy Crops and Strategies for Gene Confinement. In: Mascia, P., Scheffran, J., Widholm, J. (eds) Plant Biotechnology for Sustainable Production of Energy and Co-products. Biotechnology in Agriculture and Forestry, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13440-1_11

Download citation

Publish with us

Policies and ethics