Skip to main content

The Lung in Multiorgan Failure

  • Chapter
  • First Online:
Sepsis Management
  • 2235 Accesses

Abstract

The lung is almost invariably involved in the syndrome of multiorgan failure. However the mortality of acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is largely determined by concurrent non-lung organ failures. Increasingly, the role of mechanical ventilation has been recognized not only as a cause of ALI/ARDS, but also potentially contributing to the development of mutilorgan failure by the release of inflammatory and programmed cell death biological signals acting on organs distant from the lungs. This review summarizes the current epidemiology of ALI/ARDS, particularly with regards to its contribution to multiorgan failure. The potential mechanisms by which lung injury including that caused by mechanical ventilation are analyzed and current treatment strategies detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • (1999) International consensus conferences in intensive care medicine: Ventilator-associated Lung Injury in ARDS. This official conference report was cosponsored by the American Thoracic Society, The European Society of Intensive Care Medicine, and The Societe de Reanimation de Langue Francaise, and was approved by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med 160(6):2118–2124

    Google Scholar 

  • (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 342(18):1301–1308

    Google Scholar 

  • Abraham E, Matthay MA et al (2000) Consensus conference definitions for sepsis, septic shock, acute lung injury, and acute respiratory distress syndrome: time for a reevaluation. Crit Care Med 28(1):232–235

    PubMed  CAS  Google Scholar 

  • Adhikari NKJ, Burns KEA et al (2007) Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis. BMJ 334(7597):779

    PubMed  Google Scholar 

  • Amato MB, Barbas CS et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338(6):347–354

    PubMed  CAS  Google Scholar 

  • Anzueto A, Frutos-Vivar F et al (2004) Incidence, risk factors and outcome of barotrauma in mechanically ventilated patients. Intensive Care Med 30(4):612–619

    PubMed  Google Scholar 

  • Artigas A, Bernard GR et al (1998) The American-European Consensus Conference on ARDS, part 2: ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling. Acute respiratory distress syndrome. Am J Respir Crit Care Med 157(4 Pt 1):1332–1347

    PubMed  CAS  Google Scholar 

  • Ashbaugh DG, Bigelow DB et al (1967) Acute respiratory distress in adults. Lancet 2(7511):319–323

    PubMed  CAS  Google Scholar 

  • Atabai K, Matthay MA (2002) The pulmonary physician in critical care. 5: acute lung injury and the acute respiratory distress syndrome: definitions and epidemiology. Thorax 57(5):452–458

    PubMed  CAS  Google Scholar 

  • Australia and New Zealand Extracorporeal Membrane Oxygenation (ANZ ECMO) Influenza Investigators et al (2009) Extracorporeal membrane oxygenation for 2009 influenza A(H1N1) acute respiratory distress syndrome. JAMA 302(17):1888–1895

    Google Scholar 

  • Bailey TC, Martin EL et al (2003) High oxygen concentrations predispose mouse lungs to the deleterious effects of high stretch ventilation. J Appl Physiol 94(3):975–982

    PubMed  Google Scholar 

  • Balzan S, de Almeida Quadros C et al (2007) Bacterial translocation: overview of mechanisms and clinical impact. J Gastroenterol Hepatol 22(4):464–471

    PubMed  CAS  Google Scholar 

  • Bernard GR, Artigas A et al (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149(3 Pt 1):818–824

    PubMed  CAS  Google Scholar 

  • Bikker IG, Leonhardt S et al (2009) Lung volume calculated from electrical impedance tomography in ICU patients at different PEEP levels. Intensive Care Med 35(8):1362–1367

    PubMed  Google Scholar 

  • Brun-Buisson C, Minelli C et al (2004) Epidemiology and outcome of acute lung injury in European intensive care units. Results from the ALIVE study. Intensive Care Med 30(1):51–61

    PubMed  Google Scholar 

  • Burrows FG, Edwards JM (1970) A pulmonary disease in patients ventilated with high oxygen concentrations. Br J Radiol 43(516):848–855

    PubMed  CAS  Google Scholar 

  • Caironi P, Carlesso E et al (2006) Radiological imaging in acute lung injury and acute respiratory distress syndrome. Semin Respir Crit Care Med 27(4):404–415

    PubMed  Google Scholar 

  • Christie JD (2004) Genetic epidemiology of acute lung injury: choosing the right candidate genes is the first step. Crit Care (Lond) 8(6):411–413

    Google Scholar 

  • Cobb JP, Buchman TG et al (2000) Molecular biology of multiple organ dysfunction syndrome: injury, adaptation, and apoptosis. Surg Infect 1(3):207–213; discussion 214–205

    CAS  Google Scholar 

  • Courtney SE, Durand DJ et al (2002) High-frequency oscillatory ventilation versus conventional mechanical ventilation for very-low-birth-weight infants. N Engl J Med 347(9):643–652

    PubMed  Google Scholar 

  • Dahlem P, van Aalderen WMC et al (2004) Randomized controlled trial of aerosolized prostacyclin therapy in children with acute lung injury. Crit Care Med 32(4):1055–1060

    PubMed  Google Scholar 

  • David M, Weiler N et al (2003) High-frequency oscillatory ventilation in adult acute respiratory distress syndrome. Intensive Care Med 29(10):1656–1665

    PubMed  Google Scholar 

  • Davidson TA, Caldwell ES et al (1999) Reduced quality of life in survivors of acute respiratory distress syndrome compared with critically ill control patients. JAMA 281(4):354–360

    PubMed  CAS  Google Scholar 

  • Davidson WJ, Dorscheid D et al (2006) Exogenous pulmonary surfactant for the treatment of adult patients with acute respiratory distress syndrome: results of a meta-analysis. Crit Care (Lond) 10(2):R41

    Google Scholar 

  • Del Sorbo L, Slutsky AS (2010) Ventilatory support for acute respiratory failure: new and ongoing pathophysiological, diagnostic and therapeutic developments. Curr Opin Crit Care 16(1):1–7

    PubMed  Google Scholar 

  • Dellinger RP, Zimmerman JL et al (1998) Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: results of a randomized phase II trial. Inhaled Nitric Oxide in ARDS Study Group. Crit Care Med 26(1):15–23

    PubMed  CAS  Google Scholar 

  • Derdak S, Mehta S et al (2002) High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med 166(6):801–808

    PubMed  Google Scholar 

  • Desai SR, Wells AU et al (1999) Acute respiratory distress syndrome: CT abnormalities at long-term follow-up. Radiology 210(1):29–35

    PubMed  CAS  Google Scholar 

  • Dicker RA, Morabito DJ et al (2004) Acute respiratory distress syndrome criteria in trauma patients: why the definitions do not work. J Trauma 57(3):522–526; discussion 526–528

    PubMed  Google Scholar 

  • Dobyns EL, Anas NG et al (2002) Interactive effects of high-frequency oscillatory ventilation and inhaled nitric oxide in acute hypoxemic respiratory failure in pediatrics. Crit Care Med 30(11):2425–2429

    PubMed  CAS  Google Scholar 

  • Dong BM, Abano JB et al (2009) Nitric oxide ventilation of rat lungs from non-heart-beating donors improves posttransplant function. Am J Transplant 9(12):2707–2715

    PubMed  CAS  Google Scholar 

  • dos Santos CC, Han B et al (2004) DNA microarray analysis of gene expression in alveolar epithelial cells in response to TNFalpha, LPS, and cyclic stretch. Physiol Genomics 19(3):331–342

    PubMed  Google Scholar 

  • Dowdy DW, Eid MP et al (2006) Quality of life after acute respiratory distress syndrome: a meta-analysis. Intensive Care Med 32(8):1115–1124

    PubMed  Google Scholar 

  • Doyle RL, Szaflarski N et al (1995) Identification of patients with acute lung injury. Predictors of mortality. Am J Respir Crit Care Med 152(6 Pt 1):1818–1824

    PubMed  CAS  Google Scholar 

  • Dreyfuss D, Soler P et al (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137(5):1159–1164

    PubMed  CAS  Google Scholar 

  • Duffett M, Choong K et al (2007) Surfactant therapy for acute respiratory failure in children: a systematic review and meta-analysis. Crit Care (Lond) 11(3):R66

    Google Scholar 

  • Eisner MD, Thompson T et al (2001) Efficacy of low tidal volume ventilation in patients with different clinical risk factors for acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 164(2):231–236

    PubMed  CAS  Google Scholar 

  • Fagerberg A, Stenqvist O et al (2009) Electrical impedance tomography applied to assess matching of pulmonary ventilation and perfusion in a porcine experimental model. Crit (Lond) 13(2):R34

    Google Scholar 

  • Ferguson ND, Chiche J-D et al (2005a) Combining high-frequency oscillatory ventilation and recruitment maneuvers in adults with early acute respiratory distress syndrome: the Treatment with Oscillation and an Open Lung Strategy (TOOLS) Trial pilot study. Crit Care Med 33(3):479–486

    PubMed  Google Scholar 

  • Ferguson ND, Frutos-Vivar F et al (2005b) Airway pressures, tidal volumes, and mortality in patients with acute respiratory distress syndrome (see comment). Crit Care Med 33(1):21–30

    PubMed  Google Scholar 

  • Ferguson ND, Frutos-Vivar F et al (2005c) Acute respiratory distress syndrome: underrecognition by clinicians and diagnostic accuracy of three clinical definitions. Crit Care Med 33(10):2228–2234

    PubMed  Google Scholar 

  • Ferring M, Vincent JL (1997) Is outcome from ARDS related to the severity of respiratory failure? Eur Respir J 10(6):1297–1300

    PubMed  CAS  Google Scholar 

  • Fisher AB, Beers MF (2008) Hyperoxia and acute lung injury. Am J Physiol Lung Cell Mol Physiol 295(6):L1066; author reply L1067

    PubMed  CAS  Google Scholar 

  • Forfia PR, Watkins SP et al (2005) Relationship between B-type natriuretic peptides and pulmonary capillary wedge pressure in the intensive care unit. J Am Coll Cardiol 45(10):1667–1671

    PubMed  CAS  Google Scholar 

  • Foti G, Cereda M et al (2000) Effects of periodic lung recruitment maneuvers on gas exchange and respiratory mechanics in mechanically ventilated acute respiratory distress syndrome (ARDS) patients. Intensive Care Med 26(5):501–507

    PubMed  CAS  Google Scholar 

  • Frutos-Vivar F, Nin N et al (2004) Epidemiology of acute lung injury and acute respiratory distress syndrome. Curr Opin Crit Care 10(1):1–6

    PubMed  Google Scholar 

  • Gao L, Barnes KC (2009) Recent advances in genetic predisposition to clinical acute lung injury. Am J Physiol Lung Cell Mol Physiol 296(5):L713–L725

    PubMed  CAS  Google Scholar 

  • Gattinoni L, Caironi P et al (2006a) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354(17):1775–1786

    PubMed  CAS  Google Scholar 

  • Gattinoni L, Caironi P et al (2006b) The role of CT-scan studies for the diagnosis and therapy of acute respiratory distress syndrome. Clin Chest Med 27(4):559–570; abstract vii

    PubMed  Google Scholar 

  • Gerlach H, Keh D et al (2003) Dose-response characteristics during long-term inhalation of nitric oxide in patients with severe acute respiratory distress syndrome: a prospective, randomized, controlled study. Am J Respir Crit Care Med 167(7):1008–1015

    PubMed  Google Scholar 

  • Ghio AJ, Elliott CG et al (1989) Impairment after adult respiratory distress syndrome. An evaluation based on American Thoracic Society recommendations [Erratum appears in Am Rev Respir Dis 1989 Sep;140(3):862]. Am Rev Respir Dis 139(5):1158–1162

    PubMed  CAS  Google Scholar 

  • Gillart T, Bazin JE et al (1998) Combined nitric oxide inhalation, prone positioning and almitrine infusion improve oxygenation in severe ARDS. Can J Anaesth 45(5 Pt 1):402–409

    PubMed  CAS  Google Scholar 

  • Girgis K, Hamed H et al (2006) A decremental PEEP trial identifies the PEEP level that maintains oxygenation after lung recruitment. Respir Care 51(10):1132–1139

    PubMed  Google Scholar 

  • Glauser FL, Smith WR (1975) Pulmonary interstitial fibrosis following near-drowning and exposure to short-term high oxygen concentrations. Chest 68(3):373–375

    PubMed  CAS  Google Scholar 

  • Goodman LR, Fumagalli R et al (1999) Adult respiratory distress syndrome due to pulmonary and extrapulmonary causes: CT, clinical, and functional correlations. Radiology 213(2):545–552

    PubMed  CAS  Google Scholar 

  • Gries A, Bode C et al (1998) Inhaled nitric oxide inhibits human platelet aggregation, P-selectin expression, and fibrinogen binding in vitro and in vivo. Circulation 97(15):1481–1487

    PubMed  CAS  Google Scholar 

  • Groll DL, Heyland DK et al (2006) Assessment of long-term physical function in acute respiratory distress syndrome (ARDS) patients: comparison of the Charlson Comorbidity Index and the Functional Comorbidity Index. Am J Phys Med Rehabil 85(7):574–581

    PubMed  Google Scholar 

  • Guerin C (2006) Ventilation in the prone position in patients with acute lung injury/acute respiratory distress syndrome. Curr Opin Crit Care 12(1):50–54

    PubMed  Google Scholar 

  • Guery B, Neviere R et al (1997) Mechanical ventilation regimen induces intestinal permeability changes in a rat model (abstract). Am J Respir Crit Care Med 155:A505

    Google Scholar 

  • Guidot DM, Roman J (2002) Chronic ethanol ingestion increases susceptibility to acute lung injury: role of oxidative stress and tissue remodeling. Chest 122(6 Suppl):309S–314S

    PubMed  CAS  Google Scholar 

  • Hager DN, Krishnan JA et al (2005) Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med 172(10):1241–1245

    PubMed  Google Scholar 

  • Heyland DK, Groll D et al (2005) Survivors of acute respiratory distress syndrome: relationship between pulmonary dysfunction and long-term health-related quality of life. Crit Care Med 33(7):1549–1556

    PubMed  Google Scholar 

  • Hirschl RB, Croce M et al (2002) Prospective, randomized, controlled pilot study of partial liquid ventilation in adult acute respiratory distress syndrome. Am J Respir Crit Care Med 165(6):781–787

    PubMed  Google Scholar 

  • Holbrook PR, Taylor G et al (1980) Adult respiratory distress syndrome in children. Pediatr Clin North Am 27(3):677–685

    PubMed  CAS  Google Scholar 

  • Hotchkiss RS, Schmieg RE Jr et al (2000) Rapid onset of intestinal epithelial and lymphocyte apoptotic cell death in patients with trauma and shock. Crit Care Med 28(9):3207–3217

    PubMed  CAS  Google Scholar 

  • Hotchkiss RS, Swanson PE et al (1999) Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 27(7):1230–1251

    PubMed  CAS  Google Scholar 

  • Hu X, Guo C et al (2007) Inhaled nitric oxide attenuates hyperoxic and inflammatory injury without alteration of phosphatidylcholine synthesis in rat lungs. Pulm Pharmacol Ther 20(1):75–84

    PubMed  CAS  Google Scholar 

  • Imai Y, Kawano T et al (1994) Inflammatory chemical mediators during conventional ventilation and during high frequency oscillatory ventilation. Am J Respir Crit Care Med 150(6 Pt 1):1550–1554

    PubMed  CAS  Google Scholar 

  • Imai Y, Nakagawa S et al (2001) Comparison of lung protection strategies using conventional and high-frequency oscillatory ventilation. J Appl Physiol 91(4):1836–1844

    PubMed  CAS  Google Scholar 

  • Imai Y, Parodo J et al (2003) Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA 289(16):2104–2112

    PubMed  Google Scholar 

  • Imai Y, Slutsky AS (2005) High-frequency oscillatory ventilation and ventilator-induced lung injury. Crit Care Med 33(3 Suppl):S129–S134

    PubMed  Google Scholar 

  • Ito Y, Veldhuizen RA et al (1997) Ventilation strategies affect surfactant aggregate conversion in acute lung injury. Am J Respir Crit Care Med 155(2):493–499

    PubMed  CAS  Google Scholar 

  • Jia X, Malhotra A et al (2008) Risk factors for ARDS in patients receiving mechanical ventilation for  >  48 h. Chest 133(4):853–861

    PubMed  Google Scholar 

  • Kallet RH, Branson RD (2007) Respiratory controversies in the critical care setting. Do the NIH ARDS Clinical Trials Network PEEP/FIO2 tables provide the best evidence-based guide to balancing PEEP and FIO2 settings in adults? Respir Care 52(4):461–475; discussion 475–467

    PubMed  Google Scholar 

  • Kavelaars A, van de Pol M et al (1997) Beta 2-adrenergic activation enhances interleukin-8 production by human monocytes. J Neuroimmunol 77(2):211–216

    PubMed  CAS  Google Scholar 

  • Kawano T, Mori S et al (1987) Effect of granulocyte depletion in a ventilated surfactant-depleted lung. J Appl Physiol 62(1):27–33

    PubMed  CAS  Google Scholar 

  • Koh Y, Kang JL et al (2001) Inhaled nitric oxide down-regulates intrapulmonary nitric oxide production in lipopolysaccharide-induced acute lung injury. Crit Care Med 29(6):1169–1174

    PubMed  CAS  Google Scholar 

  • Leikauf GD, McDowell SA et al (2001) Functional genomics of oxidant-induced lung injury. Adv Exp Med Biol 500:479–487

    PubMed  CAS  Google Scholar 

  • Levy MM (2002) Optimal peep in ARDS. Changing concepts and current controversies. Crit Care Clin 18(1):15–33

    PubMed  Google Scholar 

  • Lim CM, Koh Y et al (2001) Mechanistic scheme and effect of “extended sigh” as a recruitment maneuver in patients with acute respiratory distress syndrome: a preliminary study. Crit Care Med 29(6):1255–1260

    PubMed  CAS  Google Scholar 

  • Linden VB, Lidegran MK et al (2009) ECMO in ARDS: a long-term follow-up study regarding pulmonary morphology and function and health-related quality of life. Acta Anaesthesiol Scand 53(4):489–495

    PubMed  CAS  Google Scholar 

  • Luhr OR, Antonsen K et al (1999) Incidence and mortality after acute respiratory failure and acute respiratory distress syndrome in Sweden, Denmark, and Iceland. The ARF Study Group. Am J Respir Crit Care Med 159(6):1849–1861

    PubMed  CAS  Google Scholar 

  • Lundin S, Mang H et al (1999) Inhalation of nitric oxide in acute lung injury: results of a European multicentre study. The European Study Group of Inhaled Nitric Oxide. Intensive Care Med 25(9):911–919

    PubMed  CAS  Google Scholar 

  • Lyrene RK, Truog WE (1981) Adult respiratory distress syndrome in a pediatric intensive care unit: predisposing conditions, clinical course, and outcome. Pediatrics 67(6):790–795

    PubMed  CAS  Google Scholar 

  • Marini JJ (2001) Recruitment maneuvers to achieve an “open lung”–whether and how? Crit Care Med 29(8):1647–1648

    PubMed  CAS  Google Scholar 

  • Marshall RP, Webb S et al (2002) Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Respir Crit Care Med 166(5):646–650

    PubMed  Google Scholar 

  • Mead J, Takishima T et al (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28(5):596–608

    PubMed  CAS  Google Scholar 

  • Monchi M, Bellenfant F et al (1998) Early predictive factors of survival in the acute respiratory distress syndrome. A multivariate analysis. Am J Respir Crit Care Med 158(4):1076–1081

    PubMed  CAS  Google Scholar 

  • Moss M, Guidot DM et al (2000) Diabetic patients have a decreased incidence of acute respiratory distress syndrome. Crit Care Med 28(7):2187–2192

    PubMed  CAS  Google Scholar 

  • Moss M, Parsons PE et al (2003) Chronic alcohol abuse is associated with an increased incidence of acute respiratory distress syndrome and severity of multiple organ dysfunction in patients with septic shock. Crit Care Med 31(3):869–877

    PubMed  Google Scholar 

  • Murray JF, Matthay MA et al (1988) An expanded definition of the adult respiratory distress syndrome [Erratum appears in Am Rev Respir Dis 1989 Apr;139(4):1065]. Am Rev Respir Dis 138(3):720–723

    PubMed  CAS  Google Scholar 

  • Nader-Djalal N, Knight PR et al (1997) Hyperoxia exacerbates microvascular lung injury following acid aspiration. Chest 112(6):1607–1614

    PubMed  CAS  Google Scholar 

  • Nahum A, Hoyt J et al (1997) Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Crit Care Med 25(10):1733–1743

    PubMed  CAS  Google Scholar 

  • Nakos G, Batistatou A et al (2006) Lung and “end organ” injury due to mechanical ventilation in animals: comparison between the prone and supine positions. Crit Care (Lond) 10(1):R38

    Google Scholar 

  • Narimanbekov IO, Rozycki HJ (1995) Effect of IL-1 blockade on inflammatory manifestations of acute ventilator-induced lung injury in a rabbit model. Exp Lung Res 21(2):239–254

    PubMed  CAS  Google Scholar 

  • National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network et al (2006a) Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 354(21):2213–2224

    Google Scholar 

  • National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network et al (2006b) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354(24):2564–2575

    Google Scholar 

  • Nobauer-Huhmann IM, Eibenberger K et al (2001) Changes in lung parenchyma after acute respiratory distress syndrome (ARDS): assessment with high-resolution computed tomography. Eur Radiol 11(12):2436–2443

    PubMed  CAS  Google Scholar 

  • Olivera WG, Ridge KM et al (1995) Lung liquid clearance and Na, K-ATPase during acute hyperoxia and recovery in rats. Am J Respir Crit Care Med 152(4 Pt 1):1229–1234

    PubMed  CAS  Google Scholar 

  • Ozcan PE, Cakar N et al (2007) The effects of airway pressure and inspiratory time on bacterial translocation. Anesth Analg 104(2):391–396

    PubMed  Google Scholar 

  • Papathanassoglou ED, Moynihan JA et al (2000) Does programmed cell death (apoptosis) play a role in the development of multiple organ dysfunction in critically ill patients? a review and a theoretical framework. Crit Care Med 28(2):537–549

    PubMed  CAS  Google Scholar 

  • Peek GJ, Mugford M et al (2009) Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 374(9698):1351–1363

    PubMed  Google Scholar 

  • Pepe PE, Potkin RT et al (1982) Clinical predictors of the adult respiratory distress syndrome. Am J Surg 144(1):124–130

    PubMed  CAS  Google Scholar 

  • Phillips L, Toledo AH et al (2009) Nitric oxide mechanism of protection in ischemia and reperfusion injury. J Invest Surg 22(1):46–55

    PubMed  Google Scholar 

  • Pinhu L, Whitehead T et al (2003) Ventilator-associated lung injury. Lancet 361(9354):332–340

    PubMed  Google Scholar 

  • Plotz FB, Vreugdenhil HAE et al (2002) Mechanical ventilation alters the immune response in children without lung pathology. Intensive Care Med 28(4):486–492

    PubMed  Google Scholar 

  • Puybasset L, Gusman P et al (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure. CT Scan ARDS Study Group. Adult Respiratory Distress Syndrome. Intensive Care Med 26(9):1215–1227

    PubMed  CAS  Google Scholar 

  • Rana R, Vlahakis NE et al (2006) B-type natriuretic peptide in the assessment of acute lung injury and cardiogenic pulmonary edema. Crit Care Med 34(7):1941–1946

    PubMed  CAS  Google Scholar 

  • Ranieri VM, Giunta F et al (2000) Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA 284(1):43–44

    PubMed  CAS  Google Scholar 

  • Ranieri VM, Suter PM et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282(1):54–61

    PubMed  CAS  Google Scholar 

  • Reickert CA, Rich PB et al (2002) Partial liquid ventilation and positive end-expiratory pressure reduce ventilator-induced lung injury in an ovine model of acute respiratory failure. Crit Care Med 30(1):182–189

    PubMed  Google Scholar 

  • Ribeiro SP, Rhee K et al (2001) Heat stress attenuates ventilator-induced lung dysfunction in an ex vivo rat lung model. Am J Respir Crit Care Med 163(6):1451–1456

    PubMed  CAS  Google Scholar 

  • Richard JC, Maggiore SM et al (2001) Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med 163(7):1609–1613

    PubMed  CAS  Google Scholar 

  • Riley DJ, Rannels DE et al (1990) NHLBI Workshop Summary. Effect of physical forces on lung structure, function, and metabolism. Am Rev Respir Dis 142(4):910–914

    PubMed  CAS  Google Scholar 

  • Rocco TR Jr, Reinert SE et al (2001) A 9-year, single-institution, retrospective review of death rate and prognostic factors in adult respiratory distress syndrome. Ann Surg 233(3):414–422

    Google Scholar 

  • Rubenfeld GD (2003) Epidemiology of acute lung injury. Crit Care Med 31(4 Suppl):S276–S284

    PubMed  Google Scholar 

  • Rubenfeld GD, Christie JD (2004) The epidemiologist in the intensive care unit. Intensive Care Med 30(1):4–6

    PubMed  Google Scholar 

  • Rubenfeld GD, Herridge MS (2007) Epidemiology and outcomes of acute lung injury. Chest 131(2):554–562

    PubMed  Google Scholar 

  • Sedoris KC, Ovechkin AV et al (2009) Differential effects of nitric oxide synthesis on pulmonary vascular function during lung ischemia-reperfusion injury. Arch Physiol Biochem 115(1):34–46

    PubMed  CAS  Google Scholar 

  • Sinclair SE, Altemeier WA et al (2004) Augmented lung injury due to interaction between hyperoxia and mechanical ventilation. Crit Care Med 32(12):2496–2501

    PubMed  Google Scholar 

  • Skerrett SJ, Liggitt HD et al (2004) Respiratory epithelial cells regulate lung inflammation in response to inhaled endotoxin. Am J Physiol Lung Cell Mol Physiol 287(1):L143–L152

    PubMed  CAS  Google Scholar 

  • Slutsky AS, Slutsky AS (2005) Ventilator-induced lung injury: from barotrauma to biotrauma. Respir Care 50(5):646–659

    PubMed  Google Scholar 

  • Stamme C, Brasch F et al (2002) Effect of surfactant on ventilation-induced mediator release in isolated perfused mouse lungs. Pulm Pharmacol Ther 15(5):455–461

    PubMed  CAS  Google Scholar 

  • Stapleton RD, Wang BM et al (2005) Causes and timing of death in patients with ARDS. Chest 128(2):525–532

    PubMed  Google Scholar 

  • Steinberg JM, Schiller HJ et al (2004) Alveolar instability causes early ventilator-induced lung injury independent of neutrophils. Am J Respir Crit Care Med 169(1):57–63

    PubMed  Google Scholar 

  • Stuber F (2002) Genomics and acute respiratory distress syndrome. Am J Respir Crit Care Med 166(5):633–634

    PubMed  Google Scholar 

  • Sud S, Sud M et al (2008) Effect of mechanical ventilation in the prone position on clinical outcomes in patients with acute hypoxemic respiratory failure: a systematic review and meta-analysis. Can Med Assoc J 178(9):1153–1161

    Google Scholar 

  • Sznajder JI, Olivera WG et al (1995) Mechanisms of lung liquid clearance during hyperoxia in isolated rat lungs. Am J Respir Crit Care Med 151(5):1519–1525

    PubMed  CAS  Google Scholar 

  • Talmor D, Sarge T et al (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 359(20):2095–2104

    PubMed  CAS  Google Scholar 

  • Tang BMP, Craig JC et al (2009) Use of corticosteroids in acute lung injury and acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care Med 37(5):1594–1603

    PubMed  CAS  Google Scholar 

  • Taskar V, John J et al (1997) Surfactant dysfunction makes lungs vulnerable to repetitive collapse and reexpansion. Am J Respir Crit Care Med 155(1):313–320

    PubMed  CAS  Google Scholar 

  • Taylor RW, Zimmerman JL et al (2004) Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA 291(13):1603–1609

    PubMed  CAS  Google Scholar 

  • Terragni PP, Rosboch G et al (2007) Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 175(2):160–166

    PubMed  CAS  Google Scholar 

  • Toth I, Leiner T et al (2007) Hemodynamic and respiratory changes during lung recruitment and descending optimal positive end-expiratory pressure titration in patients with acute respiratory distress syndrome. Crit Care Med 35(3):787–793

    PubMed  Google Scholar 

  • Tugrul S, Akinci O et al (2003) Effects of sustained inflation and postinflation positive end-expiratory pressure in acute respiratory distress syndrome: focusing on pulmonary and extrapulmonary forms. Crit Care Med 31(3):738–744

    PubMed  Google Scholar 

  • Uhlig S (2002) Ventilation-induced lung injury and mechanotransduction: stretching it too far? Am J Physiol Lung Cell Mol Physiol 282(5):L892–L896

    PubMed  CAS  Google Scholar 

  • Villar J (2002) Genetics and the pathogenesis of adult respiratory distress syndrome. Curr Opin Crit Care 8(1):1–5

    PubMed  Google Scholar 

  • Vincent JL, Zambon M et al (2006) Why do patients who have acute lung injury/acute respiratory distress syndrome die from multiple organ dysfunction syndrome? Implications for management. Clin Chest Med 27(4):725–731, abstract x–xi

    PubMed  Google Scholar 

  • Vlahakis NE, Hubmayr RD (2005) Cellular stress failure in ventilator-injured lungs. Am J Respir Crit Care Med 171(12):1328–1342

    PubMed  Google Scholar 

  • Vreugdenhil HA, Haitsma JJ et al (2003) Ventilator-induced heat shock protein 70 and cytokine mRNA expression in a model of lipopolysaccharide-induced lung inflammation. Intensive Care Med 29(6):915–922

    PubMed  Google Scholar 

  • Walmrath D, Schneider T et al (1996) Direct comparison of inhaled nitric oxide and aerosolized prostacyclin in acute respiratory distress syndrome. Am J Respir Crit Care Med 153(3):991–996

    PubMed  CAS  Google Scholar 

  • Ware LB (2005) Prognostic determinants of acute respiratory distress syndrome in adults: impact on clinical trial design. Crit Care Med 33(3 Suppl):S217–S222

    PubMed  Google Scholar 

  • Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110(5):556–565

    PubMed  CAS  Google Scholar 

  • Weiss YG, Maloyan A et al (2002) Adenoviral transfer of HSP-70 into pulmonary epithelium ameliorates experimental acute respiratory distress syndrome. J Clin Invest 110(6):801–806

    PubMed  CAS  Google Scholar 

  • Wrigge H, Uhlig U et al (2004) The effects of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery. Anesth Analg 98(3):775–781

    PubMed  Google Scholar 

  • Yoo CG, Lee S et al (2000) Anti-inflammatory effect of heat shock protein induction is related to stabilization of I kappa B alpha through preventing I kappa B kinase activation in respiratory epithelial cells. J Immunol 164(10):5416–5423

    PubMed  CAS  Google Scholar 

  • Zilberberg MD, Epstein SK (1998) Acute lung injury in the medical ICU: comorbid conditions, age, etiology, and hospital outcome. Am J Respir Crit Care Med 157(4 Pt 1):1159–1164

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Boots .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boots, R. (2012). The Lung in Multiorgan Failure. In: Rello, J., Lipman, J., Lisboa, T. (eds) Sepsis Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03519-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03519-7_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03518-0

  • Online ISBN: 978-3-642-03519-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics