Skip to main content

Growth Evolution and Characterization of PLD Zn(Mg)O Nanowire Arrays

  • Chapter
Advances in Solid State Physics

Abstract

ZnO and Zn0.98Mg0.02O nanowires have been grown by high-pressure pulsed laser deposition on sapphire substrates covered with gold colloidal particles as nucleation sites. We present a detailed study of the nanowire size and length distribution and of the growth evolution. We find that the aspect ratio varies linearly with deposition time. The linearity coefficient is independent of the catalytic gold particle size and lateral nanowire density. The superior structural quality of the whiskers is proven by X-ray diffraction and transmission electron microscopy. The defect-free ZnO nanowires exhibit a FWHM(2θ-ω) of the ZnO(0002) reflection of 22 arcsec. We show (0–11) step habit planes on the side faces of the nanowires that are a few atomic steps in height. The microscopic homogeneity of the optical properties is confirmed by temperature-dependent cathodoluminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Klingshirn, M. Grundmann, A. Hoffmann, B. Meyer, A. Waag, Physik-Journal 5(1), 33 (2006)

    Google Scholar 

  2. S.C. Minne, S.R. Manalis, C.F. Quate, Appl. Phys. Lett. 67, 3918 (1995)

    Article  ADS  Google Scholar 

  3. Th. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, Phys. Rev. Lett. 93, 103903 (2004)

    Article  ADS  Google Scholar 

  4. Z. L. Wang, J.Phys.: Condens. Matter 16, R829 (2004)

    Article  ADS  Google Scholar 

  5. P. A. Hu, Y. Q. Liu, L. Fu, X. B. Wang, D. B. Zhu, Appl. Phys. A 80, 35 (2005)

    Article  ADS  Google Scholar 

  6. H. Yan, R. He, J. Pham, P. Yang, Adv. Mater. 15, 402 (2003)

    Article  Google Scholar 

  7. W. I. Park, G. Yi, M. Kim, S. J. Pennycook, Adv. Mater. 14, 1841 (2002)

    Article  Google Scholar 

  8. X. Gao, X. Li, W. Yu, J. Phys. Chem. B 109, 1155 (2005)

    Article  Google Scholar 

  9. M. Lorenz, E. M. Kaidashev, A. Rahm, Th. Nobis, J. Lenzner, G. Wagner, D. Spemann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett. 86, 143113 (2005)

    Article  ADS  Google Scholar 

  10. H. J. Fan, W. Lee, R. Hausschild, M. Alexe, G. L. Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, U. Gösele, Small 2, 561 (2006)

    Article  Google Scholar 

  11. M. Lorenz, E. M. Kaidashev, H. v. Wenckstern, V. Riede, C. Bundesmann, D. Spemann, G. Benndorf, H. Hochmuth, A. Rahm, H.-C. Semmelhack, M. Grundmann, Solid State Electronics 47, 2205 (2003)

    Article  ADS  Google Scholar 

  12. M. A. Wood, M. Riehle, C. D. W. Wilkinson, Nanotechnology 13, 605 (2002)

    Article  ADS  Google Scholar 

  13. M. Lorenz, J. Lenzner, E. M. Kaidashev, H. Hochmuth, M. Grundmann, Ann. Phys. (Leipzig) 13, 39 (2004)

    Article  ADS  Google Scholar 

  14. Th. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, J. Lenzner, M. Grundmann, Nano Lett. 4, 797 (2004)

    Article  ADS  Google Scholar 

  15. A. Rahm, M. Lorenz, Th. Nobis, G. Zimmermann, M. Grundmann, B. Fuhrmann, F. Syrowatka, Appl. Phys. A, in press

    Google Scholar 

  16. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998)

    Article  ADS  Google Scholar 

  17. S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, H. Shen, Appl. Phys. Lett. 80, 1529 (2002)

    Article  ADS  Google Scholar 

  18. A. P. Levitt (Ed.), Whisker Technology, (Wiley-Interscience, New York, 1970)

    Google Scholar 

  19. E. M. Kaidashev, M. Lorenz, H. v. Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett. 82, 3901 (2003)

    Article  ADS  Google Scholar 

  20. J.B. Baxter, F. Wu, E.S. Aydil, Appl. Phys. Lett. 83, 3797 (2003)

    Article  ADS  Google Scholar 

  21. B. K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, A.V. Rodina, Phys. Stat. Sol. (B) 241, 231 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rahm, A. et al. (2008). Growth Evolution and Characterization of PLD Zn(Mg)O Nanowire Arrays. In: Advances in Solid State Physics. Advances in Solid State Physics, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38235-5_9

Download citation

Publish with us

Policies and ethics