Skip to main content

Dynamics of the Inferior Olive Oscillator and Cerebellar Function

  • Living reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

The inferior olive gives rise to the climbing fiber input to cerebellar Purkinje cells and is therefore the source of one of the most powerful synapses in the brain, generating the large burst of Purkinje cell activity referred to as the complex spike. The timing of complex spikes plays a key role in theories of cerebellar function and the determinants of the temporal output structure of neurons of the inferior olive are thus of critical importance. Olivary neurons display spontaneous subthreshold oscillations (STOs) that are generated by the interplay of intrinsic voltage- and calcium-gated conductances and electrotonic coupling between groups of neurons that consequently oscillate in synchrony. Olivary action potentials are also complex, consisting of an initial spike followed by a plateau potential that drives a burst of axonal action potentials. The STOs can influence the timing of spike output and the number of spikes in the burst, implicating them in important downstream effects in the cerebellar cortex, such as complex spike timing, synchrony, and synaptic plasticity. STOs and the coupling between olivary neurons can be modified by extrinsic input, a key candidate being the afferent inhibitory connections forming the descending limb of the olivocerebellar loop. This may result in an olivary network with dynamic properties, which has led to theories of the olivocerebellar system as a generator of spatiotemporal patterns of firing. This chapter discusses evidence for these and competing models, as well as their implications for the production of motor rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albus JA (1971) A theory of cerebellar function. Math Biosci 10:25–61

    Article  Google Scholar 

  • Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6:297–311

    Article  CAS  PubMed  Google Scholar 

  • Armstrong DM (1974) Functional significance of connections of the inferior olive. Physiol Rev 54:358–417

    Article  CAS  PubMed  Google Scholar 

  • Armstrong DM, Rawson JA (1979) Activity patterns of cerebellar cortical neurones and climbing fibre afferents in the awake cat. J Physiol 289:425–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong DM, Edgley SA, Lidierth M (1988) Complex spikes in Purkinje cells of the paravermal part of the anterior lobe of the cat cerebellum during locomotion. J Physiol 400:405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bal T, McCormick DA (1997) Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current Ih. J Neurophysiol 77:3145–3156

    Article  CAS  PubMed  Google Scholar 

  • Bazzigaluppi P, De Jeu MT (2016) Heterogeneous expression of T-type Ca(2+) channels defines different neuronal populations in the inferior olive of the mouse. Front Cell Neurosci 10:192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bell CC, Kawasaki T (1972) Relations among climbing fiber responses of nearby Purkinje cells. J Neurophysiol 35:155–169

    Article  CAS  PubMed  Google Scholar 

  • Benardo LS, Foster RE (1986) Oscillatory behavior in inferior olive neurons: mechanism, modulation, cell aggregates. Brain Res Bull 17:773–784

    Article  CAS  PubMed  Google Scholar 

  • Best AR, Regehr WG (2008) Serotonin evokes endocannabinoid release and retrogradely suppresses excitatory synapses. J Neurosci 28:6508–6515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Best AR, Regehr WG (2009) Inhibitory regulation of electrically coupled neurons in the inferior olive is mediated by asynchronous release of Gaba. Neuron 62:555–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop GA, Ho RH (1984) Substance P and serotonin immunoreactivity in the rat inferior olive. Brain Res Bull 12:105–113

    Article  CAS  PubMed  Google Scholar 

  • Bishop GA, Ho RH (1986) Cell bodies of origin of serotonin-immunoreactive afferents to the inferior olivary complex of the rat. Brain Res 399:369–373

    Article  CAS  PubMed  Google Scholar 

  • Bleasel AF, Pettigrew AG (1992) Development and properties of spontaneous oscillations of the membrane potential in inferior olivary neurons in the rat. Dev Brain Res 65:43–50

    Article  CAS  Google Scholar 

  • Blenkinsop TA, Lang EJ (2006) Block of inferior olive gap junctional coupling decreases Purkinje cell complex spike synchrony and rhythmicity. J Neurosci 26:1739–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloedel JR, Ebner TJ (1984) Rhythmic discharge of climbing fibre afferents in response to natural peripheral stimuli in the cat. J Physiol 352:129–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Yu E, Kim D, Urbano FJ, Makarenko V, Shin HS, Llinas RR (2010) Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: a study in mutant mice. J Physiol 588:3031–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chorev E, Yarom Y, Lampl I (2007) Rhythmic episodes of subthreshold membrane potential oscillations in the rat inferior olive nuclei in vivo. J Neurosci 27:5043–5052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crill WE (1970) Unitary multiple-spiked responses in cat inferior olive nucleus. J Neurophysiol 33:199–209

    Article  CAS  PubMed  Google Scholar 

  • Davie JT, Clark BA, Hausser M (2008) The origin of the complex spike in cerebellar Purkinje cells. J Neurosci 28:7599–7609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Montigny C, Lamarre Y (1973) Rhythmic activity induced by harmaline in the olivo-cerebello-bulbar system of the cat. Brain Res 53:81–95

    Article  PubMed  Google Scholar 

  • De Montigny C, Lamarre Y (1974) Activity in the olivo-cerebello-bulbar system of the cat during ibogaline- and oxotremorine-induced tremor. Brain Res 82:369–373

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Holstege JC, Ruigrok TJH, Voogd J (1989) Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: anterograde tracing combined with immunohistochemistry. J Comp Neurol 284:12–35

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Hertzberg EL, Mugnaini E (1995) The dendritic lamellar body: a new neuronal organelle putatively associated with dendrodendritic gap junctions. J Neurosci 15:1587–1604

    Article  PubMed  PubMed Central  Google Scholar 

  • De Zeeuw CI, Lang EJ, Sugihara I, Ruigrok TJ, Eisenman LM, Mugnaini E, Llinas R (1996) Morphological correlates of bilateral synchrony in the rat cerebellar cortex. J Neurosci 16:3412–3426

    Article  PubMed  PubMed Central  Google Scholar 

  • De Zeeuw CI, Van Alphen AM, Hawkins RK, Ruigrok TJH (1997) Climbing fibre collaterals contact neurons in the cerbellar nuclei that provide a GABAergic feedback to the inferior olive. Neuroscience 80:981–986

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekoek S, Ruigrok TJ (1998) Microcircuitry and function of the inferior olive. Trends Neurosci 21:391–400

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Chorev E, Devor A, Manor Y, Giessen RSVD, Jeu MTD, Hoogenraad CC, Bijman J, Ruigrok TJH, French P, Jaarsma D, Kistler WM, Meier C, Petrasch-Parwez E, Dermietzel R, Sohl G, Gueldenagel M, Willecke K, Yarom Y (2003) Deformation of network connectivity in the inferior olive of Connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level. J Neurosci 23:4700–4711

    Article  PubMed  PubMed Central  Google Scholar 

  • De Zeeuw CI, Hoebeek FE, Bosman LW, Schonewille M, Witter L, Koekkoek SK (2011) Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci 12:327–344

    Article  PubMed  CAS  Google Scholar 

  • Dean P, Porrill J, Ekerot CF, Jorntell H (2010) The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci 11:30–43

    Article  CAS  PubMed  Google Scholar 

  • Devor A (2002) The great gate: control of sensory information flow to the cerebellum. Cerebellum 1:27–34

    Article  PubMed  Google Scholar 

  • Devor A, Yarom Y (2000) GABAergic modulation of olivary oscillations. Prog Brain Res 124:213

    Article  CAS  PubMed  Google Scholar 

  • Devor A, Yarom Y (2002a) Coherence of subthreshold activity in coupled inferior olivary neurons. Ann N Y Acad Sci 978:508

    Article  CAS  PubMed  Google Scholar 

  • Devor A, Yarom Y (2002b) Generation and propagation of subthreshold waves in a network of inferior olivary neurons. J Neurophysiol 87:3059–3069

    Article  PubMed  Google Scholar 

  • Eccles JC, Llinas R, Sasaki K (1966) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol 182:268–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garden DLF, Rinaldi A, Nolan MF (2017) Active integration of glutamatergic input to the inferior olive generates bidirectional postsynaptic potentials. J Physiol 595:1239–1251

    Article  CAS  PubMed  Google Scholar 

  • Garden DLF, Oostland M, Jelitai M, Rinaldi A, Duguid I, Nolan MF (2018) Inferior olive HCN1 channels coordinate synaptic integration and complex spike timing. Cell Rep 22:1722–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gellman R, Houk JC, Gibson AR (1983) Somatosensory properties of the inferior olive of the cat. J Comp Neurol 215:228–243

    Article  CAS  PubMed  Google Scholar 

  • Gellman R, Gibson AR, Houk JC (1985) Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. J Neurophysiol 54:40–60

    Article  CAS  PubMed  Google Scholar 

  • Headley PM, Lodge D, Duggan AW (1976) Drug-induced rhythmical activity in the inferior olivary complex of the rat. Brain Res 101:461–478

    Article  CAS  PubMed  Google Scholar 

  • Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R (2018) Encoding of error and learning to correct that error by the Purkinje cells of the cerebellum. Nat Neurosci 21:736–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoebeek FE, Witter L, Ruigrok TJ, De Zeeuw CI (2010) Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proc Natl Acad Sci U S A 107:8410–8415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoge GJ, Davidson KG, Yasumura T, Castillo PE, Rash JE, Pereda AE (2011) The extent and strength of electrical coupling between inferior olivary neurons is heterogeneous. J Neurophysiol 105:1089–1101

    Article  PubMed  Google Scholar 

  • Ito M (1970) Neurophysiological aspects of the cerebellar motor control system. Int J Neurol 7:162–176

    CAS  PubMed  Google Scholar 

  • Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    Article  CAS  PubMed  Google Scholar 

  • Jacobson GA, Rokni D, Yarom Y (2008) A model of the olivo-cerebellar system as a temporal pattern generator. Trends Neurosci 31:617–625

    Article  CAS  PubMed  Google Scholar 

  • Jacobson GA, Lev I, Yarom Y, Cohen D (2009) Invariant phase structure of olivo-cerebellar oscillations and its putative role in temporal pattern generation. Proc Natl Acad Sci U S A 106:3579–3584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keating JG, Thach W (1995) Nonclock behavior of inferior olive neurons: interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random. J Neurophysiol 73:1329–1340

    Article  CAS  PubMed  Google Scholar 

  • Keating JG, Thach W (1997) No clock signal in the discharge of neurons in the deep cerebellar nuclei. J Neurophysiol 77:2232–2234

    Article  CAS  PubMed  Google Scholar 

  • Keller R (1901) Ueber die Folgen von Verletzungen in der Gegend der unteren Olive bei der Katze. Arch Anat Physiol Anat Abth 17:177–249

    Google Scholar 

  • Khosrovani S, Van Der Giessen RS, De Zeeuw CI, De Jeu MT (2007) In vivo mouse inferior olive neurons exhibit heterogeneous subthreshold oscillations and spiking patterns. Proc Natl Acad Sci U S A 104:15911–15916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JJ, Krupa DJ, Thompson RF (1998) Inhibitory cerebello-olivary projections and blocking effect in classical conditioning. Science 279:570–573

    Article  CAS  PubMed  Google Scholar 

  • Kistler WM, De Jeu MT, Elgersma Y, Van Der Giessen RS, Hensbroek RA, Luo C, Koekkoek SK, Hoogenraad CC, Hamers FP, Gueldenagel M, Sohl G, Willecke K, De Zeeuw CI (2002) Analysis of Cx36 knockout does not support tenet that olivary gap junctions are required for complex spike synchronization and normal motor performance. Ann N Y Acad Sci 978: 391–404

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa S, Wolpert DM (2005) Rhythmicity, randomness and synchrony in climbing fiber signals. Trends Neurosci 28:611–619

    Article  CAS  PubMed  Google Scholar 

  • Klimoff J (1899) Ueber die Leitungsbahnen des Kleinhirns. Arch Anat Physiol Anat Abth 1078:11–27

    Google Scholar 

  • Lampl I, Yarom Y (1993) Subthreshold oscillations of the membrane potential: a functional synchronizing and timing device. J Neurophysiol 70:2181–2186

    Article  CAS  PubMed  Google Scholar 

  • Lampl I, Yarom Y (1997) Subthreshold oscillations and resonant behavior: two manifestations of the same mechanism. Neuroscience 78:325–341

    Article  CAS  PubMed  Google Scholar 

  • Lang EJ (2001) Organization of olivocerebellar activity in the absence of excitatory glutamatergic input. J Neurosci 21:1663–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang EJ (2002) GABAergic and glutamatergic modulation of spontaneous and motor-cortex-evoked complex spike activity. J Neurophysiol 87:1993–2008

    Article  CAS  PubMed  Google Scholar 

  • Lang EJ, Sugihara I, Llinas R (1997) Differential roles of Apamin- and Charybdotoxin-sensitive K+ Conductances in the generation of inferior olive rhythmicity in vivo. J Neurosci 17:2825–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang EJ, Sugihara I, Welsh JP, Llinas R (1999) Patterns of spontaneous Purkinje cell complex spike activity in the awake rat. J Neurosci 19:2728–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang EJ, Llinas R, Sugihara I (2006a) Isochrony in the olivocerebellar system underlies complex spike synchrony. J Physiol 573:277–279; author reply 281-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang EJ, Sugihara I, LlinÁS R (2006b) Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat. J Physiol 571:101–120

    Article  CAS  PubMed  Google Scholar 

  • Lang EJ, Apps R, Bengtsson F, Cerminara NL, De Zeeuw CI, Ebner TJ, Heck DH, Jaeger D, Jorntell H, Kawato M, Otis TS, Ozyildirim O, Popa LS, Reeves AM, Schweighofer N, Sugihara I, Xiao J (2017) The roles of the olivocerebellar pathway in motor learning and motor control. A Consensus Paper. Cerebellum 16:230–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Lefler Y, Yarom Y, Uusisaari MY (2014) Cerebellar inhibitory input to the inferior olive decreases electrical coupling and blocks subthreshold oscillations. Neuron 81:1389–1400

    Article  CAS  PubMed  Google Scholar 

  • Levitan H, Tauc L, Segundo JP (1970) Electrical transmission among neurons in the buccal ganglion of a Mollusc, Navanax inermis. J Gen Physiol 55:484–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leznik E, Llinas R (2005) Role of gap junctions in synchronized neuronal oscillations in the inferior olive. J Neurophysiol 94:2447–2456

    Article  PubMed  Google Scholar 

  • Leznik E, Makarenko V, Llinas R (2002) Electrotonically mediated oscillatory patterns in neuronal ensembles: an in vitro voltage-dependent dye-imaging study in the inferior olive. J Neurosci 22:2804–2815

    Article  PubMed  PubMed Central  Google Scholar 

  • Llinas RR (2009) Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction. Neuroscience 162:797–804

    Article  CAS  PubMed  Google Scholar 

  • Llinas R, Sasaki K (1989) The functional organization of the olivo-cerebellar system as examined by multiple Purkinje cell recordings. Eur J Neurosci 1:587–602

    Article  PubMed  Google Scholar 

  • Llinas R, Volkind RA (1973) The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor. Exp Brain Res 18:69–87

    Article  CAS  PubMed  Google Scholar 

  • Llinas R, Yarom Y (1981a) Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol 315:549–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llinas R, Yarom Y (1981b) Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol 315:569–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llinas R, Yarom Y (1986) Oscillatory properties of Guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol 376:163–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llinas R, Baker R, Sotelo C (1974) Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol 37:560–571

    Article  CAS  PubMed  Google Scholar 

  • Loewenstein Y, Mahon S, Chadderton P, Kitamura K, Sompolinsky H, Yarom Y, Hausser M (2005) Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nat Neurosci 8:202–211

    Article  CAS  PubMed  Google Scholar 

  • Long MA, Deans MR, Paul DL, Connors BW (2002) Rhythmicity without synchrony in the electrically uncoupled inferior olive. J Neurosci 22:10898–10905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manor Y, Yarom Y, Cherov E, Devor A (2000) To beat or not to beat: a decision taken at the network level. J Physiol Paris 94:375–390

    Article  CAS  PubMed  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall SP, Lang EJ (2004) Inferior olive oscillations gate transmission of motor cortical activity to the cerebellum. J Neurosci 24:11356–11367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall SP, Lang EJ (2009) Local changes in the excitability of the cerebellar cortex produce spatially restricted changes in complex spike synchrony. J Neurosci 29:14352–14362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruta J, Hensbroek RA, Simpson JI (2007) Intraburst and interburst signaling by climbing fibers. J Neurosci 27:11263–11270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathy A, Ho SS, Davie JT, Duguid IC, Clark BA, Hausser M (2009) Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron 62:388–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathy A, Clark BA, Hausser M (2014) Synaptically induced long-term modulation of electrical coupling in the inferior olive. Neuron 81:1290–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto-Makidono Y, Nakayama H, Yamasaki M, Miyazaki T, Kobayashi K, Watanabe M, Kano M, Sakimura K, Hashimoto K (2016) Ionic basis for membrane potential resonance in neurons of the inferior olive. Cell Rep 16:994–1004

    Article  CAS  PubMed  Google Scholar 

  • Ozden I, Sullivan MR, Lee HM, Wang SS (2009) Reliable coding emerges from coactivation of climbing fibers in microbands of cerebellar Purkinje neurons. J Neurosci 29:10463–10473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardoe J, Edgley SA, Drew T, Apps R (2004) Changes in excitability of ascending and descending inputs to cerebellar climbing fibers during locomotion. J Neurosci 24:2656–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YG, Park HY, Lee CJ, Choi S, Jo S, Choi H, Kim YH, Shin HS, Llinas RR, Kim D (2010) Ca(V)3.1 is a tremor rhythm pacemaker in the inferior olive. Proc Natl Acad Sci U S A 107:10731–10736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Placantonakis DG, Welsh JP (2001) Two distinct oscillatory states determined by the NMDA receptor in rat inferior olive. J Physiol 534:123–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Placantonakis DG, Schwarz C, Welsh JP (2000) Serotonin suppresses subthreshold and suprathreshold oscillatory activity of rat inferior olivary neurones in vitro. J Physiol 524:833–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Placantonakis DG, Bukovsky AA, Zeng X-H, Kiem H-P, Welsh JP (2004) Fundamental role of inferior olive connexin 36 in muscle coherence during tremor. Proc Natl Acad Sci U S A 101:7164–7169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Placantonakis DG, Bukovsky AA, Aicher SA, Kiem HP, Welsh JP (2006) Continuous electrical oscillations emerge from a coupled network: a study of the inferior olive using lentiviral knockdown of connexin36. J Neurosci 26:5008–5016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramon Y, Cajal S (1909) Histologie du système nerveux de l’homme et des vertébrés. Maloine, Paris

    Google Scholar 

  • Scheibel ME, Scheibel AB (1955) The inferior olive: a Golgi study. J Comp Neurol 102:77–131

    Article  CAS  PubMed  Google Scholar 

  • Schultz SR, Kitamura K, Post-Uiterweer A, Krupic J, Hausser M (2009) Spatial pattern coding of sensory information by climbing fiber-evoked calcium signals in networks of neighboring cerebellar Purkinje cells. J Neurosci 29:8005–8015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweighofer N, Doya K, Kawato M (1999) Electrophysiological properties of inferior olive neurons: a compartmental model. J Neurophysiol 82:804–817

    Article  CAS  PubMed  Google Scholar 

  • Schweighofer N, Doya K, Fukai H, Chiron JV, Furukawa T, Kawato M (2004) Chaos may enhance information transmission in the inferior olive. Proc Natl Acad Sci U S A 101:4655–4660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SS (1998) Step cycle-related oscillatory properties of inferior olivary neurons recorded in ensembles. Neuroscience 82:69–81

    Article  CAS  PubMed  Google Scholar 

  • Sotelo C, Llinas R, Baker R (1974) Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. J Neurophysiol 37:541–559

    Article  CAS  PubMed  Google Scholar 

  • Sugihara I, Lang EJ, Llinas R (1995) Serotonin modulation of inferior olivary oscillations and synchronicity: a multiple-electrode study in the rat cerebellum. Eur J Neurosci 7:521–534

    Article  CAS  PubMed  Google Scholar 

  • Szentagothai J, Rajkovits K (1959) Ueber den Ursprung der Kletterfasern des Kleinhirns. Z Anat EntwGesch 121:130–141

    Article  Google Scholar 

  • Takeuchi Y, Sano Y (1983) Immunohistochemical demonstration of serotonin-containing nerve fibers in the inferior olivary complex of the rat, cat, and monkey. Cell Tissue Res 231:17–28

    Article  CAS  PubMed  Google Scholar 

  • Turecek J, Yuen GS, Han VZ, Zeng XH, Bayer KU, Welsh JP (2014) NMDA receptor activation strengthens weak electrical coupling in mammalian brain. Neuron 81:1375–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbano FJ, Simpson JI, Llinas RR (2006) Somatomotor and oculomotor inferior olivary neurons have distinct electrophysiological phenotypes. Proc Natl Acad Sci U S A 103:16550–16555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Giessen RS, Koekkoek SK, Van Dorp S, De Gruijl JR, Cupido A, Khosrovani S, Dortland B, Wellershaus K, Degen J, Deuchars J, Fuchs EC, Monyer H, Willecke K, De Jeu MT, De Zeeuw CI (2008) Role of olivary electrical coupling in cerebellar motor learning. Neuron 58:599–612

    Article  CAS  Google Scholar 

  • Van Essen TA, Van Der Giessen RS, Koekkoek SK, Vanderwerf F, Zeeuw CI, Van Genderen PJ, Overbosch D, De Jeu MT (2010) Anti-malaria drug mefloquine induces motor learning deficits in humans. Front Neurosci 4:191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Welie I, Van Hooft JA, Wadman WJ (2004) Homeostatic scaling of neuronal excitability by synaptic modulation of somatic hyperpolarization-activated Ih channels. Proc Natl Acad Sci U S A 101:5123–5128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Welsh JP, Lang EJ, Sugihara I, Llinas R (1995) Dynamic organization of motor control within the olivocerebellar system. Nature 374:453–457

    Article  CAS  PubMed  Google Scholar 

  • Welsh JP, Han VZ, Rossi DJ, Mohr C, Odagiri M, Daunais JB, Grant KA (2011) Bidirectional plasticity in the primate inferior olive induced by chronic ethanol intoxication and sustained abstinence. Proc Natl Acad Sci U S A 108:10314–10319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Lisberger SG (2014) Purkinje-cell plasticity and cerebellar motor learning are graded by complex-spike duration. Nature 510:529–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beverley A. Clark .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kostadinov, D., Mathy, A., Clark, B.A. (2019). Dynamics of the Inferior Olive Oscillator and Cerebellar Function. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_44-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_44-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics