Skip to main content

Effects on Other Microorganisms

  • Chapter
  • First Online:
Sesquiterpene Lactones

Abstract

Sesquiterpene lactones (STLs) are natural and semisynthetic compounds displaying interesting biological activities, including antiprotozoal, anti-inflammatory, and cytotoxic among the most studied. Some compounds belonging to this group have recently been described as promising antimicrobial hits. In this chapter, the antifungal, antibacterial, and antiviral properties will be discussed, taking into account their basic chemical scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATCC:

American Type Culture Collection

DNA:

Deoxyribonucleic acid

EC50 :

Half maximal effective concentration

HBeAg:

Hepatitis B e antigen

HBsAg:

Hepatitis B virus surface antigen

HBV:

Hepatitis B virus

IC50 :

Half-maximal inhibitory concentration

MIC:

Minimum inhibitory concentration

MTCC:

Microbial Type Culture Collection

References

  • Akatsuka T, Kodama O, Sekido H et al (1985) Novel phytoalexins (oryzalexins A, B and C) isolated from rice blast leaves infected with Pyricularia oryzae. Part I: Isolation, characterization and biological activities of oryzalexins. Agric Biol Chem 49:1689–1694

    CAS  Google Scholar 

  • Amaya S, Pereira JA, Borkosky SA et al (2012) Inhibition of quorum sensing in Pseudomonas aeruginosa by sesquiterpene lactones. Phytomedicine 19:1173–1177

    Article  CAS  PubMed  Google Scholar 

  • Barrero A, Oltra JE, Álvarez M et al (2000) New sources and antifungal activity of sesquiterpene lactones. Fitoterapia 71:60–64

    Article  CAS  PubMed  Google Scholar 

  • But PHH, He ZD, Ma SC et al (2009) Antiviral constituents against respiratory viruses from Mikania micrantha. J Nat Prod 72:925–928

    Article  CAS  PubMed  Google Scholar 

  • Cartagena E, Colom OA, Neske A et al (2007) Effects of plant lactones on the production of biofilm of Pseudomonas aeruginosa. Chem Pharm Bull 55:22–25

    Article  CAS  PubMed  Google Scholar 

  • Ciric A, Karioti A, Koukoulitsa C et al (2012) Sesquiterpene lactones from Centaurea zuccariniana and their antimicrobial activity. Chem Biodivers 9:2843–2853

    Article  CAS  PubMed  Google Scholar 

  • Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16

    Article  CAS  PubMed  Google Scholar 

  • Djeddi S, Karioti A, Sokovic M et al (2007) Minor sesquiterpene lactones from Centaurea pullata and their antimicrobial activity. J Nat Prod 70:1796–1799

    Article  CAS  PubMed  Google Scholar 

  • Efferth T, Romero MR, Wolf DG et al (2008) The antiviral activities of artemisinin and artesunate. Clin Infect Dis 47:804–811

    Article  CAS  PubMed  Google Scholar 

  • Facey P, Pascoe KO, Porter RB et al (1999) Investigation of plants used in Jamaican folk medicine for anti-bacterial activity. J Pharm Pharmacol 51:1555–1560

    Article  Google Scholar 

  • Feng JT, Wang H, Ren SX et al (2012) Synthesis and antifungal activities of carabrol ester derivatives. J Agric Food Chem 60:3817–3823

    Article  CAS  PubMed  Google Scholar 

  • Fortuna AM, Juárez ZN, Bach H et al (2011) Antimicrobial activities of sesquiterpene lactones and inositol derivatives from Hymenoxys robusta. Phytochemistry 72:2413–2418

    Article  CAS  PubMed  Google Scholar 

  • Galindo JCG, Hernández A, Dayan FE et al (1999) Dehydrozaluzanin C, a natural sesquiterpenolide, causes plasma membrane leakage. Phytochemistry 52:805–813

    Article  CAS  Google Scholar 

  • Gökbulut A, Şarer E (2013) Isolation and quantification of alantolactone/isoalantolactone from the roots of Inula helenium subsp turcoracemosa. Turk J Pharm Sci 10:447–452

    Google Scholar 

  • Goswami S, Bhakuni RS, Chinniah A et al (2012) Anti-Helicobacter pylori potential of artemisinin and its derivatives. Antimicrob Agents Chemother 56:4594–4607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock REW (2007) The end of an era? Nat Rev Drug Discov 6:28

    Article  CAS  Google Scholar 

  • Hartmann S, Neeff J, Heer U et al (1978) Arenaemycin (pentalenolactone): a specific inhibitor of glycolysis. FEBS Lett 93:339–342

    Article  CAS  PubMed  Google Scholar 

  • Herz W (1977) Biogenetic aspects of sesquiterpene lactone chemistry. Isr J Chem 16:32–44

    Article  CAS  Google Scholar 

  • Herz W (1978) Sesquiterpene lactones in the Compositae. In: Heywood VH, Harborne JB, Turner BL (eds) The biology and chemistry of the Compositae, vol 1. Academic Press, London, pp 337–357

    Google Scholar 

  • Hoagland DT, Liu J, Lee RB et al (2016) New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv Drug Deliv Rev 102:55–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda G, Yeşilada E, Tabata M et al (1996) Traditional medicine in Turkey VI. Folk medicine in West Anatolia: Afyon, Kiitahya, Denizli, Mu la, Aydln provinces. J Ethnopharmacol 53:75–87

    PubMed  CAS  Google Scholar 

  • Inoue A, Tamogami S, Kato H et al (1995) Antifungal melampolides from leaf extracts of Smallanthus sonchifolius. Phytochemistry 39:845–848

    Article  CAS  Google Scholar 

  • Ivanescu B, Miron A, Corciova A (2015) Sesquiterpene lactones from Artemisia Genus: biological activities and methods of analysis. J Anal Methods Chem., Article ID 247685, 21. https://doi.org/10.1155/2015/247685

  • Jamal W, Bari A, Mothana RA et al (2014) Antimicrobial evaluation and crystal structure of parthenolide from Tarchonanthus camphoratus collected in Saudi Arabia. Asian J Chem 26:5183–5185

    CAS  Google Scholar 

  • Jampilek J (2016) Potential of agricultural fungicides for antifungal drug discovery. Expert Opin Drug Discovery 11:1–9

    Article  CAS  Google Scholar 

  • Li H, Zhou C, Zhou L et al (2005) In vitro antiviral activity of three enantiomeric sesquiterpene lactones from Senecio species against hepatitis B vírus. Antivir Chem Chemother 16:277–282

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li J, Wang X et al (2013) Antimicrobial constituents of the leaves of Mikania micrantha H. B. K. PLoS One 8(10):e76725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin F, Hasegawa M, Kodama O (2003) Purification and identification of antimicrobial sesquiterpene lactones from Yacon (Smallanthus sonchifolius) leaves. Biosci Biotechnol Biochem 67:2154–2159

    Article  CAS  PubMed  Google Scholar 

  • Lin LT, Hsu WC, Lin CC (2014) Antiviral natural products and herbal medicines. J Tradit Complement Med 4:24–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu JF, Wang L, Wang YF et al (2015) Sesquiterpenes from the fruits of Illicium jiadifengpi and their anti-hepatitis B virus activities. Fitoterapia 104:41–44

    Article  CAS  PubMed  Google Scholar 

  • Macías FA, Galindo JCG, Molinillo JMG et al (2000) Dehydrozaluzanin C: a potent plant growth regulator with potential use as a natural herbicide template. Phytochemistry 54:165–171

    Article  PubMed  Google Scholar 

  • Macías FA, Santana A, Durán AG et al (2013) Guaianolides for multipurpose molecular design. In: Beck J, Coats J, Duke S, Koivunen M (eds) Pest management with natural products, vol 1141. ACS, New York, pp 167–188. https://doi.org/10.1021/bk-2013-1141.ch012

    Chapter  Google Scholar 

  • Maruyama M, Omura S (1977) Carpesiolin from Carpesium abrotanoides. Phytochemistry 16:782–783

    Article  CAS  Google Scholar 

  • Maruyama M, Shibata F (1975) Stereochemistry of granilin isolated from Carpesium abrotanoides. Phytochemistry 14:2247–2248

    Article  CAS  Google Scholar 

  • Merfort I (2011) Perspectives on sesquiterpene lactones in inflammation and cáncer. Curr Drug Targets 12:1560–1573

    Article  CAS  PubMed  Google Scholar 

  • Özçelik B, Gürbüz I, Karaoglu T et al (2009) Antiviral and antimicrobial activities of three sesquiterpene lactones from Centaurea solstitialis L. ssp. solstitialis. Microbiol Res 164:545–552

    Article  CAS  PubMed  Google Scholar 

  • Paeshuyse J, Coelmont L, Vliegen I et al (2006) Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin. Biochem Biophys Res Commun 348:139–144

    Article  CAS  PubMed  Google Scholar 

  • Picman A (1983) Antifungal activity of helenin and isohelenin. Biochem Syst Ecol 11:183–281

    Article  CAS  Google Scholar 

  • Rezeng C, Yuan D, Long J et al (2015) Alantolactone exhibited anti-herpes simplex vírus 1 (HSV-1) action in vitro. Biosci Trends 9:420–422

    Article  CAS  PubMed  Google Scholar 

  • Rios VE, León A, Chávez MI et al (2014) Sesquiterpene lactones from Mikania micrantha and Mikania cordifolia and their cytotoxic and anti-inflammatory evaluation. Fitoterapia 94:155–163

    Article  CAS  PubMed  Google Scholar 

  • Romero MR, Efferth O, Serrano MA et al (2005) Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in an “in vitro” replicative system. Antivir Res 68(2005):75–83

    Article  CAS  PubMed  Google Scholar 

  • Seca AML, Silva MAS, Pinto DCG (2017) Parthenolide and parthenolide like sesquiterpene lactones as multiple target drugs: current knowledge and new developments. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 54. Elsevier, Amsterdam, pp 337–352

    Google Scholar 

  • Takamatsu S, Xu LH, Fushinobu S et al (2011) Pentalenic acid is a shunt metabolite in the biosynthesis of the pentalenolactone family of metabolites: hydroxylation of 1-deoxypentalenic acid mediated by CYP105D7 (SAV_7469) of Streptomyces avermitilis. J Antibiot 64:65–71

    Article  CAS  PubMed  Google Scholar 

  • Vega AE, Wendel GH, Maria AOE et al (2009) Antimicrobial activity of Artemisia douglasiana and dehydroleucodine against Helicobacter pylori. J Ethnopharmacol 124:653–655

    Article  CAS  PubMed  Google Scholar 

  • Wang JF, He WJ et al (2015) Dicarabrol, a new dimeric sesquiterpene from Carpesium abrotanoides L. Bioorg Med Chem Lett 25:4082–4084

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Mei WL, Zeng YB et al (2012) A new sesquiterpene lactone from Elephantopus tomentosus. J Asian Nat Prod Res 14:700–703

    Article  CAS  PubMed  Google Scholar 

  • Wedge DE, Galindo JCG, Macías FA (2000) Fungicidal activity of natural and synthetic sesquiterpene lactone analogs. Phytochemistry 53:747–757

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Tang C, Chen L et al (2015) Dicarabrones A and B, a pair of new epimers dimerized from sesquiterpene lactones via a [3 + 2] cycloaddition from Carpesium abrotanoides. Org Lett 17:1656–1659

    Article  CAS  PubMed  Google Scholar 

  • Wu JW, Tang C, Ke CQ et al (2017) Dicarabrol A, dicarabrone C and dipulchellin A, unique sesquiterpene lactone dimers from Carpesium abrotanoides. RSC Adv 7:4639–4644

    Article  CAS  Google Scholar 

  • Xie C, Sun L, Meng L et al (2015) Sesquiterpenes from Carpesium macrocephalum inhibit Candida albicans biofilm formation and dimorphism. Bioorg Med Chem Lett 25:5409–5411

    Article  CAS  PubMed  Google Scholar 

  • Xu YJ (2013) Phytochemical and biological studies of Chloranthus medicinal plants. Chem Biodivers 10:1754

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Shi YP, Jia ZJ (2002) Sesquiterpene lactone glycosides, eudesmanolides, and other constituents from Carpesium macrocephalum. Planta Med 68:626–630

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wang C, Yang J et al (2014) Antimicrobial sesquiterpenes from the Chinese medicinal plant, Chloranthus angustifolius. Tetrahedron Lett 55:5632–5634

    Article  CAS  Google Scholar 

  • Zhang Q, Lu Y, Ding Y et al (2012) Guaianolide sesquiterpene lactones, a source to discover agents that selectively inhibit acute myelogenous leukemia stem and progenitor cells. J Med Chem 55:8757–8769

    Article  CAS  PubMed  Google Scholar 

  • Zhang JP, Wang GW et al (2015) The genus Carpesium: a review of its ethnopharmacology, phytochemistry and pharmacology. J Ethnopharmacol 163:173–191

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to María Victoria Castelli or Silvia Noelí López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castelli, M.V., López, S.N. (2018). Effects on Other Microorganisms. In: Sülsen, V., Martino, V. (eds) Sesquiterpene Lactones. Springer, Cham. https://doi.org/10.1007/978-3-319-78274-4_12

Download citation

Publish with us

Policies and ethics