Skip to main content
  • 1084 Accesses

Abstract

An abbreviation of basis spline, introduced in Schoenberg (1967): A chain of polynomials of fixed degree (usually cubic functions are used) ordered in such a way that they are continuous at the points at which they join (knots). The knots are usually placed at the x- coordinates of the data points. The function is fitted in such a way that it has continuous first- and second-derivatives at the knots; the second derivative can be set to zero at the first and last data points. Splines were first described by the Romanian-American mathematician, Isaac Jacob Schoenberg (1903–1990) (Schoenberg 1946, 1971). Other types include: quadratic, cubic and bicubic splines (Ahlberg et al. 1967). Jupp (1976) described an early application of B-splines in geophysics. See also: piecewise function, spline, smoothing spline regression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • AGOS, W.G. (1955). Line spacing effect and determination of optimum spacing illustrated by Marmora, Ontario, magnetic anomaly. Geophysics, 20, 871–885.

    Article  Google Scholar 

  • AGTERBERG, F.P. (1984a). Use of spatial analysis in mineral resource evaluation. Journal of the International Association for Mathematical Geology, 16, 565–589.

    Article  Google Scholar 

  • AGTERBERG, F.P. (ed.) (1984c). Theory, application and comparison of stratigraphic correlation methods. Computers & Geosciences, 10 (1), 1–183.

    Google Scholar 

  • AGTERBERG, F.P. (1990). Automated stratigraphic correlation. Developments in palaeontology and stratigraphy 13. Amsterdam, Elsevier.

    Google Scholar 

  • AHLBERG, J.H., NILSON, E.N. and WALSH, J.L. (1967). The theory of splines and their application. New York, NY, Academic Press.

    Google Scholar 

  • AITCHISON, J. and GREENACRE, M. (2002). Biplots of compositional data. Journal of the Royal Statistical Society, ser. C (Applied Statistics), 51, 375–392.

    Article  Google Scholar 

  • AKI, K., CHRISTOFFERSSON, A. and HUSEBY, E.S. (1977). Determination of three-dimensional seismic structure of the lithosphere. Journal of Geophysical Research, 82, 277–296.

    Article  Google Scholar 

  • ALKINS, W.E. (1920). Morphogenesis of brachiopoda. I. Reticularia lineata (Martin), Carboniferous Limestone. Memoirs and Proceedings of the Manchester Literary and Philosophical Society, 64 (2), 1–11.

    Google Scholar 

  • ALLAUD, L.A. and MARTIN, M.H. (1977). Schlumberger. The history of a technique. New York, NY, John Wiley & Sons.

    Google Scholar 

  • ALSOP, L.E. (1968). An orthonormality relation for elastic body waves. Bulletin of the Seismological Society of America, 58, 1949–1954.

    Google Scholar 

  • ANALYTICAL METHODS COMMITTEE (2003). Terminology – the key to understanding analytical science. Part 1: Accuracy, precision and uncertainty. Royal Society of Chemistry AMC Technical Brief 13, London [online: www.rsc.org/Membership/Networking/InterestGroups/ Analytical/ AMC/TechnicalBriefs.asp].

  • ANGELIER, J. and MECHLER, P. (1977). Sur un méthode graphique de recherche des contraintes principales également utilisable en tectonique et en séismologie: La méthode des dièdres droits [A graphical method for researching principal constraints in tectonics and seismology. Right dihedrals]. Bulletin de la Société géologique de France, 19, 1309–1318.

    Article  Google Scholar 

  • ARMSTRONG, M. and DIAMOND, P. (1984). Testing variograms for positive-definiteness. Journal of the International Association for Mathematical Geology, 16, 407–421.

    Article  Google Scholar 

  • ARMSTRONG, M.P. and BENNETT, D.A. (1990). A bit-mapped classifier for groundwater quality assessment. Computers & Geosciences, 16, 811–832.

    Article  Google Scholar 

  • BACKUS, G.E. and GILBERT, J.F. (1967). Numerical applications of a formalism for geophysical inverse problems. Geophysical Journal of the Royal Astronomical Society, 13, 247–276.

    Article  Google Scholar 

  • BACKUS, G.E. and GILBERT, J.F. (1968). The resolving power of gross earth data. Geophysical Journal of the Royal Astronomical Society, 16, 169–205.

    Article  Google Scholar 

  • BACKUS, G.E. and GILBERT, J.F. (1970). Uniqueness in the inversion of inaccurate gross earth data. Philosophical Transactions of the Royal Society, London, ser. A, 266, 123–192.

    Article  Google Scholar 

  • BARTLETT, M.S. (1948). Smoothing periodograms from time series with continuous spectra. Nature, 161, 686–687.

    Article  Google Scholar 

  • BARTLETT, M.S. (1950). Periodogram analysis and continuous spectra. Biometrika, 37, 1–16.

    Article  Google Scholar 

  • BAYES, T. (1763). An essay towards solving a problem in the doctrine of chances. By the Late Rev. Mr. Bayes, F.R.S. Communicated by Mr [R.] Price, in a letter to John Canton, A.M. F.R.S. Philosophical Transactions of the Royal Society, London, 53, 370–418.

    Article  Google Scholar 

  • BELYAEV, Y.K. (1961). Continuity and Hölder conditions for sample functions of stationary Gaussian processes. In: NEYMAN, J. (ed.). Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability. v. 2. Contributions to Probability Theory, Berkeley, CA, University of California Press, 23–33.

    Google Scholar 

  • BELYAEV, Y.K. (1972). Point processes and first passage problems. In: LE CAM, L.M., NEYMAN, J. and SCOTT, E.L. (eds.). Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. v. 2. Probability Theory. Berkeley, CA, University of California Press, 1–17.

    Google Scholar 

  • BERK, K.N. (1978). Comparing subset regression procedures. Technometrics, 20, 1–6.

    Article  Google Scholar 

  • BERNŠTEIN, S.N. (1926a). Sur l’extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes [On the extension of the limit theorem of probability to sums of dependent quantities]. Mathematische Annalen, 97, 1–59.

    Article  Google Scholar 

  • BERNŠTEIN, S.N. (1926b). Sur les courbes de distribution des probabilités [On the curves of probability distributions]. Mathematische Zeitschrift, 24, 199 – 211.

    Article  Google Scholar 

  • BIBBY, J. (1986). Notes towards a history of teaching statistics. Edinburgh, John Bibby.

    Google Scholar 

  • BIENAYMÉ, I.J. (1845). De la loi de multiplication et de la durée des familles [The law of multiplication and the duration of families]. Société Philomathique de Extraits, sér. 5, 1845, 37–39.

    Google Scholar 

  • BILLINGS, M.P. (1942). Structural geology. New York, NY, Prentice-Hall.

    Google Scholar 

  • BILLINGS, M.P. (1954). Structural geology. 2nd edn., Englewood Cliffs, NJ, Prentice-Hall.

    Google Scholar 

  • BINET, J.P.M. (1839). Memoire sur les intégrales définies euleriennes, et sur leur application a la théorie des suites, ansi qu’a l’evaluation des fonctions des grands nombres [On Eulerian definite integrals, their application to suites and to functions of large numbers]. Journal de L’Ecole Royale Polytéchnique, 16, 123-343.

    Google Scholar 

  • BINGHAM, C. (1964). Distributions on the sphere and on the projective plane. Unpublished Doctoral dissertation, New Haven, CT, Yale University.

    Google Scholar 

  • BINGHAM, C. (1974). An antipodally symmetric distribution on the sphere. Annals of Statistics, 2, 1201-1255.

    Article  Google Scholar 

  • BIRKHOFF, G.D. (1908). Boundary value and expansion problems of ordinary linear differential equations. Transactions of the American Mathematical Society, 9, 373-395.

    Article  Google Scholar 

  • BIRKS, H.J.B. (1995). Quantitative palaeoenvironmental reconstructions. In: MADDY, D. and BREW, J.S. (eds.). Statistical modelling of Quaternary Science data. Technical Guide 5. Cambridge, Quaternary Research Association, 161-254.

    Google Scholar 

  • BIRKS, H.J.B., LINE, J.M., STEVENSON, A.C. and TER BRAAK, C.J.F. (1990). Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society, London, ser. B, 327, 263-278.

    Article  Google Scholar 

  • BLACKMAN, R.B. and TUKEY, J.W. (1958). The measurement of power spectra from the point of view of communications engineering. Bell System Technical Journal, 37, 185–282, 485–569.

    Article  Google Scholar 

  • BLAKE, J.F. (1878). On the measurement of the curves formed by Cephalopods and other molluscs. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, ser. 5, 3, 241–263.

    Article  Google Scholar 

  • BOATWRIGHT, J. (1978). Detailed spectral analysis of two small New York state earthquakes. Bulletin of the Seismological Society of America, 68, 1117–1131.

    Google Scholar 

  • BODE, H.W. (1934). A general theory of electric wave filters. Journal of Mathematical Physics, 13, 275–362.

    Article  Google Scholar 

  • BOOLE, G. (1854). An investigation of the laws of thought, on which are founded the mathematical theories of logic and probabilities. London, Walton and Maberly.

    Book  Google Scholar 

  • BOOTON, R.C., Jr. (1952). An optimization theory for time-varying linear systems with non-stationary statistical inputs. Proceedings of the Institute of Radio Engineers, 40, 417–425.

    Google Scholar 

  • BOTBOL, J.M. (1970). A model way to analyse the mineralogy of base metal mining districts. Mining Engineering, 22 (3), 56–59.

    Google Scholar 

  • BOULIGAND, G. (1928). Ensembles impropres et nombre dimensionnel [Improper and dimensional number sets]. Bulletin des Sciences Mathématiques, ser. 2, 52, 320–344, 361–376.

    Google Scholar 

  • BOULIGAND, G. (1929). Sur la notion d’ordre de mesure d'un ensemble plan [On the notion of order of measuring a general plane]. Bulletin des Sciences Mathématiques, ser. 2, 53, 185–192.

    Google Scholar 

  • BOWLEY, A.L. (1897). Relations between accuracy of an average and that of its constituent parts. Journal of the Royal Statistical Society, 60, 855–866.

    Google Scholar 

  • BOX, G.E.P. and COX, D.R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, 26, 211–252.

    Google Scholar 

  • BOX, G.E.P. and JENKINS, G.M. (1970). Time series analysis: forecasting and control. London, Holden-Day.

    Google Scholar 

  • BRACEWELL, R.N. (1956). Strip integration in radio astronomy. Australian Journal of Physics, 9, 198–217.

    Article  Google Scholar 

  • BRAY, J.R. and CURTIS, J.T. (1957). An ordination of the upland forest communities of Southern Wisconsin. Ecology Monographs, 27, 325–349.

    Article  Google Scholar 

  • BREDDIN, H. (1956). Die tektonische Deformation der Fossilien im Rheinischen Schiefergebirge [The tectonic deformation of the fossils in the Rhenish Slate Mountains]. Zeitschrift der Deutschen Geologischen Gesellschaft, 106, 227–305.

    Google Scholar 

  • BRIGGS, H. (1617). Logarithmorum chilias prima [The first thousand logarithms]. London, Unknown.

    Google Scholar 

  • BRIGGS, H. (1624). Arithmética logarithmica [Logarithmical arithmetic]. London, William Jones.

    Google Scholar 

  • BRIGGS, H. (1631). Logarithmicall arithmetike. Or tables of logarithmes for absolute numbers from an unite to 100,000: as also for sines, tangentes and secantes for every minute of a quadrant with a plaine description of their use in arithmetike, geometrie, geographie, &c. London, George Miller.

    Google Scholar 

  • BRILLINGER, D.R. (1965). An introduction to polyspectra. Annals of Mathematical Statistics, 36, 1351–1374.

    Article  Google Scholar 

  • BRILLINGER, D.R. (1991). Some history of the study of higher–order moments and spectra. Statistica Sinica, 1, 465–476.

    Google Scholar 

  • BRILLINGER, D.R. and ROSENBLATT, M. (1967a). Asymptotic theory of estimates of k-th order spectra. In: HARRIS, B. (ed.). Advanced seminar on spectral analysis. New York, NY, John Wiley & Sons, 153–188.

    Google Scholar 

  • BRILLINGER, D.R. and ROSENBLATT, M. (1967b). Computation and interpretation of k-th order spectra. In: HARRIS, B. (ed.). Advanced seminar on spectral analysis. New York, NY, John Wiley & Sons, 189–232.

    Google Scholar 

  • BRILLINGER, D.R. and TUKEY, J.W. (1985). Spectrum analysis in the presence of noise: Some issues and examples. In: BRILLINGER, D.R. (ed.). The collected works of John W. Tukey, Vol. II. Time series, 1965–1984. Monterey, CA, Wadsworth & Brooks Cole, 1001–1141.

    Google Scholar 

  • BROWN, R. (1828). A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. The Philosophical Magazine and Journal, ser. 2, 4, 161–173.

    Google Scholar 

  • BUCCIANTI, A., MATEU-FIGUERAS, G. and PAWLOWSKY-GLAHN, V. (eds.) (2006). Compositional data analysis in the geosciences: From theory to practice. London, The Geological Society.

    Google Scholar 

  • BUCHER, W.H. (1944). The stereographic projection, a handy tool for the practical geologist. Journal of Geology, 52, 191–212.

    Article  Google Scholar 

  • BUCHHOLZ, W. (1981). Origin of the word ‘Byte’. IEEE Annals of the History of Computing, 3, 72.

    Google Scholar 

  • BUCHHOLZ, W. (ed.) (1962). Planning a computer system. Project Stretch. New York, NY, McGraw-Hill.

    Google Scholar 

  • BUFFON, G. (1777). Essai d’arithmétique morale. Histoire naturelle, générale et particulière, avec la description du Cabinet du Roi [Essay on moral arithmetic. Natural history, general and specific, with a description of the Royal collection]. v. XXXIII (Suppléments IV. Servant de suite à l’Histoire Naturelle de l’Homme). Paris, L’Imprimerie Royale.

    Google Scholar 

  • BURCH, C.R. and MURGATROYD, P.N. (1971). Broken-line and complex frequency distributions. Journal of the International Association for Mathematical Geology, 3, 135–155.

    Article  Google Scholar 

  • BURG, J.P. (1967). Maximum entropy spectral analysis. Proceedings of the 37th Meeting of the Society of Exploration Geophysicists, Oklahoma City, Oklahoma, 31 October 1967, pp. 34–41. In: CHILDERS, D.G. (ed.). (1978). Modern spectrum analysis. New York, NY, IEEE Press, 34–39.

    Google Scholar 

  • BURG, J.P. (1968). A new analysis technique for time series data. Paper given at: NATO Advanced Study Institute on signal processing with emphasis on underwater acoustics, 12–23 August 1968, Twente Institute of Technology, Enschede, The Netherlands. In: CHILDERS, D.G. (ed.). (1978). Modern spectrum analysis. New York, NY, IEEE Press, 42–48.

    Google Scholar 

  • BURG, J.P. (1975). Maximum entropy spectral analysis. Doctoral dissertation. Stanford Exploration Project Report no. 6, Stanford, CA, Stanford Exploration Project, Stanford University (online: http://sepwww.stanford.edu/data/media/public/oldreports/sep06/).

  • BURMA, B.H. (1948). Studies in quantitative paleontology, I. Some aspects of the theory and practice of quantitative invertebrate paleontology, Journal of Paleontology, 22, 725–761.

    Google Scholar 

  • BURMA, B.H. (1949). Studies in quantitative paleontology. II. Multivariate analysis – a new analytical tool for paleontology and geology, Journal of Paleontology, 23, 95–103.

    Google Scholar 

  • BURMA, B.H. (1953). Studies in quantitative paleontology. III. An application of sequential analysis to the comparison of growth stages and growth series. The Journal of Geology, 61, 533–543.

    Article  Google Scholar 

  • BURNABY, T.P. (1970). On a method for character weighting a similarity coefficient, employing the concept of information. Journal of the International Association for Mathematical Geology, 2, 25–38.

    Article  Google Scholar 

  • BURR, I. W. (1942). Cumulative frequency functions. The Annals of Mathematical Statistics, 13, 215–232.

    Article  Google Scholar 

  • BUTTERWORTH, S. (1930). On the theory of filter amplifiers. Wireless Engineer, 7, 536–541.

    Google Scholar 

  • BUTTKUS, B. (1991). Spektralanalyse und Filtertheorie in der angewandten Geophysik. Berlin, Springer-Verlag.

    Book  Google Scholar 

  • BUTTKUS, B. (2000). Spectral analysis and filter theory in applied geophysics [translated by C NEWCOMB]. . Berlin, Springer-Verlag.

    Google Scholar 

  • CABALAR, A.F. and CEVIK, A. (2009). Modelling damping ratio and shear modulus of sand-mica mixtures using neural networks. Engineering Geology, 104, 31–40.

    Article  Google Scholar 

  • CAERS, J., BEIRLANT, J. and MAES, M.A. (1999a). Statistics for modeling heavy tailed distributions in geology: Part I. Methodology. Mathematical Geology, 31, 391–410.

    Article  Google Scholar 

  • CAERS, J., BEIRLANT, J. and MAES, M.A. (1999b). Statistics for modeling heavy tailed distributions in geology: Part II. Applications. Mathematical Geology, 31, 411–434.

    Article  Google Scholar 

  • CAMERON, M.A. and HUNT, J.W. (1985). A model for the statistical distribution of microlithotypes in coal. Journal of the International Association for Mathematical Geology, 17, 267–285.

    Article  Google Scholar 

  • CAMINA, A.R. and JANACEK, G.J. (1984). Mathematics for seismic data processing and interpretation. London, Graham and Trotman.

    Book  Google Scholar 

  • CAMPBELL, G.A. (1922). Physical theory of the electric wave-filter. Bell System Technical Journal, 1 (2), 1–32.

    Article  Google Scholar 

  • CAMPBELL, K. (1988). Bootstrapped models for intrinsic random functions. Mathematical Geology, 20, 699–715.

    Article  Google Scholar 

  • CARDIFF, M. and KITANDIS, P.K. (2009). Bayesian inversion for facies detection: An extensible level set framework. Water Resources Research, 45(10), W10416 [online: http://dx.doi.org/10.1029/2008WR007675].

  • CARR, J.R. (1990). Rapid solution of kriging equations, using a banded Gauss elimination algorithm. Geotechnical and Geological Engineering, 8, 393–399.

    Google Scholar 

  • CARR, J.R. and MYERS, D.E. (1990). Efficiency of different equation solvers in cokriging. Computers and Geosciences, 16, 705–716.

    Article  Google Scholar 

  • CHAMBERS, J.M.; CLEVELAND, W.S., KLEINER, B. and TUKEY, P.A. (1983). Graphical methods for data analysis. Belmont, CA, Wadsworth International.

    Google Scholar 

  • CHEENEY, R.F. (1983). Statistical methods in geology. London, George Allen & Unwin.

    Google Scholar 

  • CHEETHAM, A.H. and HAZEL, J.E. (1969). Binary (presence/absence) similarity coefficients. Journal of Palaeontology, 43, 1130–1136.

    Google Scholar 

  • CHENG, R. T.-S. and HODGE, D.S. (1976). Finite-element method in modeling geologic transport processes. Journal of the International Association for Mathematical Geology, 8, 43–56.

    Article  Google Scholar 

  • CHIN, S.-T. (1991). Bandwidth selection for kernel density estimation. Annals of Statistics, 19, 1528–1546.

    Article  Google Scholar 

  • CHOI, S.-S., CHA, S.-H. and TAPPERT, C.C. (2010). A survey of binary similarity and distance measures. Journal of Systemics, Cybernetics and Informatics, 8, 43–48.

    Google Scholar 

  • CHORK, C.Y. and GOVETT, G.J.S. (1979). Interpretation of geochemical soil surveys by block averaging. Journal of Geochemical Exploration, 11, 53–71.

    Article  Google Scholar 

  • CHRISTAKOS, G. (1990). A Bayesian/maximum-entropy view to the spatial estimation problem. Mathematical Geology, 22, 763–776.

    Article  Google Scholar 

  • CHRISTAKOS, G. (2000). Modern spatiotemporal geostatistics. International Association for Mathematical Geology Studies in Mathematical Geology. v. 6. Oxford, Oxford University Press.

    Google Scholar 

  • CHUNG, C.-J.F. (1981). Application of the Buffon needle problem and its extensions to parallel-line search sampling scheme. Journal of the International Association for Mathematical Geology, 13, 371–390.

    Article  Google Scholar 

  • CIARAMELLA, A., DE LAURO, E., DE MARTINO, S., DI LIETO, B., FALANGA, M. and TAGLIAFERRI, R. (2004). Characterization of Strombolian events by using independent component analysis. Nonlinear Processes in Geophysics, 11, 453–461.

    Article  Google Scholar 

  • CLARK, J.S. and ROYALL, P.D. (1996). Local and regional sediment charcoal evidence for fire regimes in Presettlement north-eastern North America. Journal of Ecology, 84, 365–382.

    Article  Google Scholar 

  • COLLINS, W.D. (1923). Graphic representation of water analyses. Industrial and Engineering Chemistry, 15, 394.

    Article  Google Scholar 

  • COMMITTEE OF COUNCIL ON EDUCATION (1876). Catalogue of the Special Loan Collection of scientific apparatus at the South Kensington Museum. 2nd edn., London, Her Majesty’s Stationery Office.

    Google Scholar 

  • COMON, P. (1994). Independent Component Analysis: a new concept? Signal Processing, 36, 287–314.

    Article  Google Scholar 

  • COMON, P. and JUTTEN, C. (2010). Handbook of blind source separation, Independent Component Analysis and applications. Oxford, Academic Press.

    Google Scholar 

  • CONSTABLE, C. and TAUXE, L. (1990). The bootstrap for magnetic susceptibility tensors. Journal of Geophysical Research, 95, 8383–8395.

    Article  Google Scholar 

  • COOK, R.D. and JOHNSON, M.E. (1981). A family of distributions for modelling non-elliptically symmetric multivariate data. Journal of the Royal Statistical Society, ser. B, B43, 210–218.

    Google Scholar 

  • COURNOT, A.A. (1843). Exposition de la théorie des chances et des probabilités [Exposition of the theory of chance and probabilities.]. Paris, L. Hachette.

    Google Scholar 

  • COX, D.R. (1970). The analysis of binary data. New York, NY, Barnes and Noble.

    Google Scholar 

  • CRANDALL, I.B. (1926). Theory of vibrating systems and sound. New York, NY, Van Nostrand.

    Google Scholar 

  • CUBITT, J.M. and REYMENT, R.A. (eds.) (1982). Quantitative stratigraphic correlation. Chichester, John Wiley & Sons.

    Google Scholar 

  • CULLING, W.E.H. (1989). The characterization of regular/irregular surfaces in the soil-covered landscape by Gaussian random fields. Computers & Geosciences, 15, 219–226.

    Article  Google Scholar 

  • CULLING, W.E.H. and DATKO, M. (1987). The fractal geometry of the soil-covered landscape. Earth Surface Processes and Landforms, 12, 369–385.

    Article  Google Scholar 

  • CURL, R.C. (1998). Bayesian estimation of isotopic age differences. Mathematical Geology, 20, 693–698.

    Article  Google Scholar 

  • DACEY, M.F. and KRUMBEIN, W.C. (1979). Models of breakage and selection for particle size distributions. Journal of the International Association for Mathematical Geology, 11, 193–222.

    Article  Google Scholar 

  • DAVIS, M.W. (1987b). Generating large stochastic simulations – The matrix polynomial approximation method. Mathematical Geology, 19, 99–107.

    Article  Google Scholar 

  • DAVIS, M.W.D. and DAVID, M. (1980). Generating bicubic spline coefficients on a large regular grid. Computers & Geosciences, 6, 1–6.

    Article  Google Scholar 

  • DODSON, J. (1742). The anti-Logarithmic canon. Being a table of numbers, consisting of eleven places of figures, corresponding to all Logarithms under 100000 London, James Dodson.

    Google Scholar 

  • DORE, A.G., AUGUSTSON, J.H., HERMANRUD, C., STEWART, D.J. and SYLTA, O. (eds.) (1993). Basin Modelling: Advances and Applications – Proceedings of the Norwegian Petroleum Society Conference, Stavanger, Norway, 13–15 March 1991. Amsterdam, Elsevier Science.

    Google Scholar 

  • DUNSTAN, S.P. and MILL, A.J.B. (1989). Spatial indexing of geological models using linear octrees. Computers & Geosciences, 15, 1291–1301.

    Article  Google Scholar 

  • DYK, K. and EISLER, J.D. (1951). A study of the influence of background noise on reflection picking. Geophysics, 16, 450–455.

    Article  Google Scholar 

  • EBERHART-PHILLIPS, D. (1986). Three-dimensional velocity structure in northern California Coast Ranges from inversion of local earthquake travel times. Bulletin of the Seismological Society of America, 76, 1025–1052.

    Google Scholar 

  • ECKERT-MAUCHLY COMPUTER CORP. (1949). The BINAC [Mimeographed trade brochure. online: http://www.computerhistory.org/collections/accession/102646200].

  • EDISON, T.A. (1878). Letter to Theodor Puskás, 13 November 1878 [Edison papers, Document file series D-78-21. Rutgers University; online: http://www.edison.rutgers.edu/namesSearch.php3].

  • EDMONDS, F.N. and WEBB, C.J. (1970). A comparison of the statistical stability and spectral resolution of power coherence and phase spectra of solar photospheric fluctuations as evaluated by Fast-Fourier-Transform techniques and by the Mean-Lagged-Product method [abstract]. Bulletin of the American Astronomical Society, 2, 312.

    Google Scholar 

  • EFRON, B. (1979). Bootstrap methods: another look at the jackknife. Annals of Statistics, 7, 1–26.

    Article  Google Scholar 

  • EFRON, B. and TIBSHIRANI, R.J. (1993). An introduction to the bootstrap. New York, NY, Chapman and Hall.

    Book  Google Scholar 

  • EINSTEIN, A. (1905). Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [Requirements of the molecular kinetic theory of heat movement of suspended particles in liquids at rest]. Annalen der Physik, 17, 549–560.

    Article  Google Scholar 

  • EINSTEIN, A. (1926). Investigations on the theory of the Brownian movement [translated by A.D. COWPER]. London, Methuen.

    Google Scholar 

  • ELGAR, S. and SEBERT, G. (1989). Statistics of bicoherence and biphase. Journal of Geophysical Research, 94, 10993–10998.

    Article  Google Scholar 

  • EPSTEIN, B.J. (1947). The mathematical description of certain breakage mechanisms leading to the logarithmico-normal distribution. Journal of the Franklin Institute, 244, 471–477.

    Article  Google Scholar 

  • FEAGIN, F.J. (1981). Seismic data display and reflection perceptibility. Geophysics, 46, 106–120.

    Article  Google Scholar 

  • FEDEROV, E.S. (1902). Zonale Verhältnisse des Berylls und der Krystalle des hypohexagonalen Typus überhaupt. Zeitschrift für Kristallographie und Mineralogie, 35, 75–148.

    Google Scholar 

  • FEJÉR, L. (1904). Untersuchungen über Fouriersche Reihen [Studies on Fourier series]. Mathematische Annalen, 58, 501–569.

    Google Scholar 

  • FELLER, W. (1950). An introduction to probability theory and its applications. v. 1. New York, NY, John Wiley & Sons.

    Google Scholar 

  • FILIPPOV, A.F. (1961). On the distribution of the sizes of particles which undergo splitting [translated by N. GREENLEAF]. Theory of probability and its applications, 6, 275–294.

    Google Scholar 

  • FISCHER, G. (1930). Statistische Darstellungsmethoden in der tektonischen Forschung [Statistical methods of representation in tectonic research.]. Sitzungsberichte der Geologischen Landesanstalt, 5, 4–25.

    Google Scholar 

  • FISHER, N.I., LEWIS, T. and EMBLETON, B.J.J. (1993). Statistical analysis of spherical data. Cambridge, Cambridge University Press.

    Google Scholar 

  • FISHER, R.A. (1950a). Contributions to mathematical statistics. London, Chapman and Hall.

    Google Scholar 

  • FISHER, R.A. (1950b). Contributions to mathematical statistics. London, Chapman and Hall.

    Google Scholar 

  • FRASER, D.A.S. (1968). A black box or a comprehensive model. Technometrics, 10, 219–229.

    Article  Google Scholar 

  • FRIGGE, M., HOAGLIN, D.C. and IGLEWICZ, B. (1989). Some implementations of the boxplot. American Statistician, 43, 50–54.

    Google Scholar 

  • GABRIEL, K.R. (1971). The biplot-graphic display of matrices with application to principal component analysis. Biometrika, 58, 453–467.

    Article  Google Scholar 

  • GALTON, F. and WATSON, H. W. (1874). On the probability of extinction of families. Journal of the Anthropological Institute, 4, 138–144.

    Google Scholar 

  • GELLIBRAND, H. (1635). A discourse mathematical on the variation of the magneticall needle. Together with its admirable diminution discovered. London, William Jones.

    Google Scholar 

  • GERTSBAKH, I.B. and KORDONSKY, K.B. (1969). Models of failure. New York, NY, Springer-Verlag.

    Book  Google Scholar 

  • GHOLIPOUR, A., LUCAS, C. and ARRABI, B.N. (2004). Black box modelling of magnetospheric dynamics to forecast geomagnetic activity. Space Weather, 2, S07001 [online: http://dx.doi.org/10.1029/ 2003SW000039].

    Google Scholar 

  • GOOGLE RESEARCH (2012). Google Books Ngram Viewer (v. 2.0) [online: https://books.google.com/ ngrams/info].

  • GOWER, J.C. (1970). A note on Burnaby’s character-weighted similarity coefficient. Journal of the International Association for Mathematical Geology, 2, 39–45.

    Article  Google Scholar 

  • GRADSTEIN, F.M., AGTERBERG, F.P., BROWER, J.C. and SCHWARZACHER, W.S. (eds.) (1985). Quantitative stratigraphy. Dordrecht, D. Reidel.

    Google Scholar 

  • GREEN, D.G. (1981). Time series and postglacial forest ecology. Quaternary Research, 15, 265–277.

    Article  Google Scholar 

  • GREEN, D.G. (1982). Fire and stability in the postglacial forests of southwest Nova Scotia. Journal of Biogeography, 9, 29–40.

    Article  Google Scholar 

  • GREENACRE, M. J. and UNDERHILL, L.G. (1982). Scaling a data matrix in low-dimensional Euclidean space. In: HAWKINS, D.M. (ed.). Topics in Applied Multivariate Analysis. Cambridge, Cambridge University Press, 183–268.

    Chapter  Google Scholar 

  • GRIFFITHS, J.C. (1978a). Mineral resource assessment using the unit regional value concept. Journal of the International Association for Mathematical Geology, 10, 441–472.

    Article  Google Scholar 

  • GRIFFITHS, J.C. (1978b). Some alternate exploration strategies. In: MERRIAM, D.F. (ed.). Geology Contribution 5. Geomathematics: Past, present, and prospects. Syracuse, NY, Syracuse University, 23–36.

    Google Scholar 

  • GRILLOT, L.R. (1975). Calculation of the magnetotelluric tensor impedance: Analysis of band-limited MT signal pairs. Geophysics, 40, 790–797.

    Article  Google Scholar 

  • GUBBINS, D. (2004). Time series analysis and inverse theory for geophysicists. Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • GUNNING, J. and GLINSKY, M.E. (2007). Detection of reservoir quality using Bayesian seismic inversion. Geophysics, 72, R37–R49.

    Article  Google Scholar 

  • HAGELBERG, T.K., PISIAS, N.G. and ELGAR, S. (1991). Linear and nonlinear couplings between orbital forcing and the marine δ18O record during the late Neogene. Palaeoceanography, 6, 729–746.

    Article  Google Scholar 

  • HALMOS, P.R. (1944). Random alms. The Annals of Mathematical Statistics, 15, 182–189.

    Article  Google Scholar 

  • HANNISDAL, B. (2007). Inferring phenotypic evolution in the fossil record by Bayesian inversion. Paleobiology, 33, 98–115.

    Article  Google Scholar 

  • HARBAUGH, J.W. (1963). BALGOL program for trend-surface mapping using an IBM 7090 computer. Kansas Geological Survey Special Distribution Publication 3, Lawrence, KS, Kansas Geological Survey.

    Google Scholar 

  • HARBAUGH, J.W. (1964). BALGOL programs for calculation of distance coefficients and correlation coefficients using an IBM 7090 computer. Kansas Geological Survey Special Distribution Publication 9, Lawrence, KS, Kansas Geological Survey.

    Google Scholar 

  • HARFF, J. and MERRIAM, D.F. (eds.) (1993). Computerised basin analysis. New York, NY, Plenum Publishing.

    Google Scholar 

  • HARRIS, F.J. (1976). Windows, harmonic analysis, and the discrete Fourier transform. Technical Paper TP-532, San Diego, CA, United States Naval Undersea Center, Undersea Surveillance Department [online: http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA034956].

  • HARRIS, F.J. (1977). Trigonometric transforms: A unique introduction to the FFT. Technical Publication DSP-005, San Diego, CA, Scientific-Atlanta, Spectral Dynamics Division.

    Google Scholar 

  • HARRIS, F.J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66, 51–83.

    Google Scholar 

  • HARRIS, T.E. (1963). The theory of branching processes. Berlin, Springer-Verlag.

    Book  Google Scholar 

  • HARTZELL, F.Z. (1924). The use of biometric methods in the interpretation of Codling Moth experiments. Journal of Economic Entomology, 17, 183–192.

    Article  Google Scholar 

  • HATTORI, I. (1985). Probabilistic aspects of micropaleontologic assemblage zones. Journal of the International Association for Mathematical Geology, 17, 167–175.

    Article  Google Scholar 

  • HAUBRICH, R.A. (1965). Earth noise, 5 to 500 millicycles per second. 1. Spectral stationarity, normality and nonlinearity. Journal of Geophysical Research, 70, 1415–1427.

    Article  Google Scholar 

  • HAWKES, H.E. (1957). Principles of geochemical prospecting. United States Geological Survey Bulletin 1000-F, Washington, DC, United States Government Printing Office. p. 225–355.

    Google Scholar 

  • HAY, W.W. and SOUTHAM, J.R. (1978). Quantifying biostratigraphic correlation. Annual Review of Earth and Planetary Sciences, 6, 353–375.

    Article  Google Scholar 

  • HAZEL, J.E. (1970). Binary coefficients and clustering in biostratigraphy. Bulletin of the Geological Society of America, 81, 8287–8252.

    Article  Google Scholar 

  • HELSEL, D.R. (2005). Nondetects and data analysis. Hoboken, NJ, Wiley-Interscience.

    Google Scholar 

  • HELSEL, D.R. and HIRSCH, R.M. (1992). Statistical methods in water resources. Amsterdam, Elsevier.

    Google Scholar 

  • HÉRAULT, J. and ANS, B. (1984). Circuits neuronaux á synapses modifiables: Décodage de messages composites par apprentissage non supervisé [Neuronal circuits with modifiable synapses: Decoding composite messages by unsupervised learning]. Comptes Rendus de l’Académie des Sciences, 299 (III-13), 525–528.

    Google Scholar 

  • HEYDE, C. C. and SENETA, E. (1977). I. J. Bienaymé: Statistical theory anticipated. Berlin, Springer-Verlag.

    Google Scholar 

  • HOBBS, B.E., MEANS, W.D. and WILLIAMS, P.F. (1976). An outline of structural geology. New York, NY, John Wiley & Sons.

    Google Scholar 

  • HOHN, M.E. (1976). Binary coefficients: A theoretical and empirical study. Journal of the International Association for Mathematical Geology, 8, 137–150.

    Article  Google Scholar 

  • HOLMES, A. (1911). The association of lead with uranium in rock minerals, and its application to the measurement of geological time. Proceedings of the Royal Society, London, ser. A, 85, 248–256.

    Google Scholar 

  • HOPF, E. (1942). Abzweigung einer periodischen Lösung von eine stationären Lösung eines Differentialsystems [Bifurcation of a periodic solution from a stationary solution of a system of differential equations]. Berichten der Mathematisch-Physischen Klasse des Sächsischen Akademie der Wissenschaften zu Leipzig, 94, 1–22.

    Google Scholar 

  • HOWARD, L.N. and KOPELL, N. (1976). Bifurcation of a periodic solution from a stationary solution of a system of differential equations. In: MARSDEN, J.E. and MCCRACKEN, M. (eds.). The Hopf bifurcation and its applications. New York, NY, Springer-Verlag, 163–194.

    Chapter  Google Scholar 

  • HOWARTH, R.J. (1973b). Preliminary assessment of a nonlinear mapping algorithm in a geological context. Journal of the International Association for Mathematical Geology, 5, 39–57.

    Article  Google Scholar 

  • HOWARTH, R.J. (1996b). History of the stereographic projection and its early use in geology. Terra Nova, 8, 499–513.

    Article  Google Scholar 

  • HOWARTH, R.J. and EARLE, S.A.M. (1979). Application of a generalised power transformation to geochemical data. Journal of the International Association for Mathematical Geology, 11, 45–62.

    Article  Google Scholar 

  • HUMBOLDT, A. von. (1811). Atlas géographique et physique du royaume de la Nouvelle-Espagne [Geographical and physical atlas of New Spain]. Paris, F. Schoell.

    Google Scholar 

  • HUMPHREYS, E. and CLAYTON, R.W. (1988). Adaptation of back projection tomography to seismic travel time problems. Journal of Geophysical Research, 93, 1073–1085.

    Article  Google Scholar 

  • HYVÄRINEN, A. and OJA, E. (2000). Independent Component Analysis: Algorithms and Applications. Neural Networks, 13, 411–430.

    Article  Google Scholar 

  • HYVÄRINEN, A., KARHUNEN, J. and OJA, E. (2001). Independent Component Analysis. Adaptive and Learning Systems for Signal Processing, Communications and Control. New York, NY, John Wiley & Sons.

    Google Scholar 

  • IMBRIE, J. (1956). Biometrical methods in the study of invertebrate fossils. Bulletin of the American Museum of Natural History, 108, 215–252.

    Google Scholar 

  • ISAAKS, E.H. and SRIVASTAVA, R.M. (1989). Applied geostatistics. Oxford, Oxford University Press.

    Google Scholar 

  • JAGERS, P. (1975). Branching processes with biological applications. New York, NY, John Wiley & Sons.

    Google Scholar 

  • JEFFREYS, H. (1924). The Earth. Its origin, history and physical constitution. Cambridge, Cambridge University Press.

    Google Scholar 

  • JEFFREYS, H. (1939). Theory of probability. Oxford, Clarendon Press.

    Google Scholar 

  • JEREMIASSON, K. (1976). BASIC program for point-density measurements using a Wang 2200C minicomputer with digitizer. Computers & Geosciences, 2, 507–508.

    Article  Google Scholar 

  • JIRACEK, G.R., FERGUSON, J.F., BRAILE, L.W. and GILPIN, B. (2007). Digital analysis of geophysical signals and waves [online: http://dagsaw.sdsu.edu/1.1.html].

  • JONES, H.E. (1937). Some geometrical considerations in the general theory of fitting lines and planes. Metron, 13, 21–30.

    Google Scholar 

  • JONES, T.A. (1977). A computer method to calculate the convolution of statistical distributions. Journal of the International Association for Mathematical Geology, 9, 635–648.

    Article  Google Scholar 

  • JONES, T.A. and JAMES, W.R. (1969). Analysis of bimodal orientation data. Journal of the International Association for Mathematical Geology, 1, 129–136.

    Article  Google Scholar 

  • JOSEPH, L. and BHAUMIK, B.K. (1997). Improved estimation of the Box-Cox transform parameter and its application to hydrogeochemical data. Mathematical Geology, 29, 963–976.

    Article  Google Scholar 

  • JOURNEL, A.G. and HUIJBREGTS, C. J. (1978). Mining geostatistics. London, Academic Press.

    Google Scholar 

  • JOY, S. and CHATTERJEE, S. (1998). A bootstrap test using maximum likelihood ratio statistics to check the similarity of two 3-dimensionally oriented data samples. Mathematical Geology, 30, 275–284.

    Article  Google Scholar 

  • JUPP, D.L. (1976). B-splines for smoothing and differentiating data sequences. Journal of the International Association for Mathematical Geology, 8, 243–266.

    Article  Google Scholar 

  • JUTTEN, C. and HÉRAULT, J. (1991). Blind separation of sources. Part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 24, 1–10.

    Article  Google Scholar 

  • KAESLER, R.L., PRESTON, F.W. and GOOD, D.I. (1963). FORTRAN II program for coefficient of association (Match-Coeff) using an IBM 1620 computer. Kansas Geological Survey Special Distribution Publication 4, Lawrence, KS, Kansas Geological Survey.

    Google Scholar 

  • KANASEWICH, E.R. (1981). Time sequence analysis in geophysics. 3rd edn., Edmonton, Alberta, University of Alberta Press.

    Google Scholar 

  • KELKER, D. and LANGENBERG, C.W. (1976). A mathematical model for orientation data from macroscopic cylindrical folds. Journal of the International Association for Mathematical Geology, 8, 549–559.

    Article  Google Scholar 

  • KEMENY, J. and KURTZ, T. (1964). A manual for the BASIC, the elementary algebraic language designed for use with the Dartmouth Time Sharing System. Dartmouth, NH, Dartmouth College Computation Centre. Dartmouth College.

    Google Scholar 

  • KENKEL, N.C. (2013). Sample size requirements for fractal dimension estimation. Community Ecology, 14, 144–152.

    Article  Google Scholar 

  • KERMACK, K.A. (1954). A biometrical study of Micraster coranginum and M. (isomicraster) senonensis. Philosophical Transactions of the Royal Society, London, ser. B, 237, 375–428.

    Google Scholar 

  • KING, T. (1996). Quantifying nonlinearity and geometry in time series of climate. Quaternary Science Reviews, 15, 247–266.

    Article  Google Scholar 

  • KNOPOFF, L. (1956). The seismic pulse in materials possessing solid friction. I: Plane waves. Bulletin of the Seismological Society of America, 46, 175–183.

    Google Scholar 

  • KOCH, G.S., LINK, R.F. and SCHUENEMEYER, J.H. (1972). Computer programs for geology. New York, Artronic Information Systems.

    Google Scholar 

  • KOLMOGOROV, A.N. (1941a). O logarifmicheski normal’nom zakone raspredeleniya razmerov chastits pri droblenii [On the logarithmic normal distribution law for the dimensions of particles under grinding]. Doklady Akademii Nauk SSSR, 31, 99–100.

    Google Scholar 

  • KOLMOGOROV, A.N. (1992). On the logarithmic normal distribution of particle sizes under grinding. In: SHIRYAYEV, A.N. (ed.). Selected works of A.N. Kolmogorov. Volume II. Probability theory and mathematical statistics. Dordrecht, Kluwer, 281–284.

    Google Scholar 

  • KOLMOGOROV, A.N. and DMITRIEV, N.A. (1947). Vetvyaščiesya slučaynye processy [Branching random processes]. Doklady Akademii Nauk SSSR, 56 (1), 7–10.

    Google Scholar 

  • KONIKOW, L.F. and BREDEHOEFT, J.D. (1978). Computer model of two-dimensional solute transport and dispersion in ground water. Techniques of water-resources investigations of the United States Geological Survey. Chapter C-2, Washington, DC, United States Government Printing Office.

    Google Scholar 

  • KOONS, F. and LUBKIN, S. (1949). Conversion of numbers from decimal to binary form in the EDVAC. Mathematical Tables and Other Aids to Computation, 3 (26), 427–431.

    Article  Google Scholar 

  • KOPPELT, U. and ROJAS, J. (1994). Backus-Gilbert inversion of potential field data in the frequency domain and its application to real and synthetic data. Geofisica Internacional, 33, 531–539.

    Google Scholar 

  • KRUMBEIN, W.C. and GRAYBILL, F.A. (1965). An introduction to statistical models in geology. New York, NY, McGraw-Hill.

    Google Scholar 

  • KRUMBEIN, W.C. and PETTIJOHN, F.J. (1938). Manual of sedimentary petrography.. New York, NY, NY, Appleton-Century.

    Google Scholar 

  • KRUMBEIN, W.C. and SLOSS, L.L. (1951). Stratigraphy and sedimentation. San Francisco, CA, W.H. Freeman.

    Google Scholar 

  • KRUMBEIN, W.C. and SLOSS, L.L. (1958). High-speed digital computers in stratigraphic and facies analysis. Bulletin of the American Association of Petroleum Geologists, 42, 2650–2669.

    Google Scholar 

  • KURZL, H. (1988). Exploratory data analysis: recent advances for the interpretation of geochemical data. Journal of Geochemical Exploration, 30, 309–322.

    Article  Google Scholar 

  • LANDAU, L.D. (1944). On the problem of turbulence. Comptes Rendus de l’Académie des Sciences de l’URSS, 44, 311–314.

    Google Scholar 

  • LAPLACE, P.-S. (1774). Mémoire sur la probabilité des causes par les événements [Memoir on the probability of causes by events.]. Mémoires de l’Académie royale des Sciences de Paris (Savants étranges), 6, 621–656.

    Google Scholar 

  • LAPLACE, P.-S. (1781). Mémoire sur les probabilités [Memoir on probabilities.]. Memoires de l’Académie Royale des Sciences, Paris, 1778, 227–332.

    Google Scholar 

  • LAPLACE, P.-S. (1812). Théorie analytique des probabilités [Analytical probability theory.]. Paris, Mme. Ve. Courcier.

    Google Scholar 

  • LAPLACE, P.-S. (1814). Théorie analytique des probabilités [Analytical probability theory.]. 2nd edn., Paris, V. Courcier.

    Google Scholar 

  • LEIBNIZ, G.W. (1703). Explication de l'arithmétique binaire, qui se sert des seuls caractères 0 et 1, avec des remarques sur son utilité, et sur ce qu'elle donne le sens des anciennes figures Chinoises de Fohy [Explanation of binary arithmetic which uses only the characters 0 and 1, with remarks on its usefulness, and how it gives meaning to the ancient Chinese figures of Fohy]. Memoires de l’Académie Royale des Sciences, Paris, 3, 85–89.

    Google Scholar 

  • LEIBNIZ, G.W. (1768). Opera omnia, nunc primum collecta, in classes distributa, praefationibus & indicibus exornatav. IV. Historia & philosophia sinesium, philosophia in genere; historia & antiquitates; jurisprudentia [Collected works. v. IV. History, philosophy and jurisprudence]. Geneva, Fratres de Tournes.

    Google Scholar 

  • LEONTE, D., NOTT, D.J. and DUNSMUIR, W.T.M. (2003). Smoothing and change point detection for Gamma ray count data. Mathematical Geology, 35, 175–194.

    Article  Google Scholar 

  • LERCHE, I. (1990). Basin analysis: Quantitative methods. San Diego, CA, Academic Press.

    Google Scholar 

  • LERCHE, I. (1992). Oil exploration: Basin analysis and economics. San Diego, CA, Academic Press.

    Google Scholar 

  • LERCHE, I., CAO, S., MALLORY, S., PETERSEN, K. and LOWRIE, A. (1998). Risk, uncertainty and priorities – Quantitative models. In: HARFF, J., LEMKE, W. and STATTEGGER, K. (eds.). Computerised modelling of sedimentary systems. Berlin, Springer Verlag, 427–452.

    Google Scholar 

  • LeROY, L.W. (1950a). Micropalaeontologic analysis. In: LEROY, L.W. (ed.). Subsurface laboratory methods (A Symposium). 2nd edn., Golden, CO, Colorado School of Mines, 84–116.

    Google Scholar 

  • LeROY, L.W. (ed.) (1950b). Subsurface logging methods. In: Subsurface geologic methods (A symposium). 2nd edn., Golden, CO, Colorado School of Mines, 344–503.

    Google Scholar 

  • LISLE, R.J. (1987). Principal stress orientations from faults: an additional constraint. Annales Tectonicae, 1, 155–158.

    Google Scholar 

  • LISLE, R.J. (1988). ROMSA: A BASIC program for paleostress analysis using fault-striation data. Computers & Geosciences, 14, 255–259.

    Article  Google Scholar 

  • LISLE, R.J. (1992). New method of estimating regional stress orientations: application to focal mechanism data of recent British earthquakes. Geophysical Journal International, 110, 276–282.

    Article  Google Scholar 

  • LOMMEL, E. (1868). Studien ueber die Bessel’schen Functionen [Studies of Bessel functions]. Leipzig, Teubner.

    Google Scholar 

  • MANDEL, J. (1991). The validation of measurement through interlaboratory studies. Chemometrics and Intelligent Laboratory Systems, 11, 109–119.

    Article  Google Scholar 

  • MANDELBROT, B. (1975a). Les objects fractales: Forme, hasard, et dimension [Fractals: Form, chance and dimension]. Paris, Flammarion.

    Google Scholar 

  • MANDELBROT, B. (1977). Fractals: Form chance and dimension. San Francisco, CA, W.H. Freeman.

    Google Scholar 

  • MANDELBROT, B.B. (1982). The fractal geometry of nature. San Francisco, CA, W.H. Freeman.

    Google Scholar 

  • MANGOUN, A. and ISRAEL, P. (2013). Did you know? Edison coined the word ‘Bug.’ [online: http://theinstitute.ieee.org/technology-focus/technology-history/did-you-know-edison-coined-the-term-bughttp://theinstitute.ieee.org/technology-focus/technology-history/did-you-know-edison-coined-the-term-bug].

  • MARCOTTE, D. and DAVID, M. (1985). The bi-Gaussian approach: A simple method for recovery estimation. Journal of the International Association for Mathematical Geology, 17, 625–644.

    Article  Google Scholar 

  • MARCUS, A.H. (1970). Stochastic models of lunar rocks and regolith. Part I. Catastrophic splitting theory. Journal of the International Association for Mathematical Geology, 2, 153–174.

    Google Scholar 

  • MARDIA, K.V. (1972). Statistics of directional data. London, Academic Press.

    Google Scholar 

  • MARDIA, K.V. and JUPP, P.E. (2000). Directional statistics. Chichester, John Wiley & Sons.

    Google Scholar 

  • MARTIN, P.M. and MILLS, A.A. (1977). Does the lunar regolith follow Rosin’s law? The Moon, 16, 215–219.

    Article  Google Scholar 

  • McCAMMON, R.B. (1977). Target intersection probabilities for parallel-line and continuous grid types of search. Journal of the International Association for Mathematical Geology, 9, 369–382.

    Article  Google Scholar 

  • McCANN, C. and TILL, R. (1973). The use of on-line computing in teaching geology and geophysics. Journal of Geological Education, 21, 187–193.

    Article  Google Scholar 

  • McGILL, R., TUKEY, J.W. and LARSEN, W.A. (1978). Variations of box plots. The American Statistician, 32, 12–16.

    Google Scholar 

  • MENDEL, J.M. (1991). Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications. Proceedings of the IEEE, 79, 278–305.

    Google Scholar 

  • MENKE, W. (1989). Geophysical data analysis: Discrete inverse theory. San Diego, CA, Academic Press.

    Google Scholar 

  • MENKE, W. (2012). Geophysical data analysis: Discrete inverse theory. MATLAB edition. Waltham, MA, Academic Press.

    Google Scholar 

  • MERRILL, S., IIIrd, and GUBER, A.L. (1982). A statistical model for foraminiferal paleobathymetry, with application to the Middle Miocene of the Hokuroku district, Japan. Journal of the International Association for Mathematical Geology, 14, 607–627.

    Google Scholar 

  • MICHIE, M.G. (1982). Use of the Bray-Curtis similarity measure in cluster analysis of foraminiferal data. Journal of the International Association for Mathematical Geology, 14, 661–667.

    Article  Google Scholar 

  • MILLENDORF, S.A., SRIVASTAVA, G.S., DYMAN, T.A. and BROWER, J.C. (1978). A FORTRAN program for calculating binary similarity coefficients. Computers & Geosciences, 4, 307–311.

    Article  Google Scholar 

  • MILLER, J. (ed.) (2015a). Earliest known uses of some of the words of mathematics [online: http://jeff560.tripod.com/mathword.html].

  • MILLER, R.L. (1949). An application of the analysis of variance to paleontology. Journal of Paleontology, 23, 635–640.

    Google Scholar 

  • MILLER, R.L. and KAHN, J.S. (1962). Statistical analysis in the geological sciences. New York, John Wiley & Sons.

    Google Scholar 

  • MINKOWSKI, H. (1901). Ueber die begriffe, länge, oberfläche und vlumen [On the terms length, surface and volume.]. Jahresbericht der Deutschen Mathematikervereinigung, 9, 115–121.

    Google Scholar 

  • MÖBIUS, A.F. (1827). Der barycentrische Calcul ein neues Hülfsmittel zur analytischen Behandlung der Geometrie dargestellt [Barycentric calculus, a new aid for the analytical treatment of geometry]. Leipzig, J.A. Barth.

    Google Scholar 

  • MONTA, P. (2015). Analysis of Briggs’ first logarithm table of 1617, Logarithmorum Chilias Prima [online: http://www.pmonta.com/tables/logarithmorum-chilias-prima/index.html].

  • MONTGOMERY, D.C. (1991a). Introduction to statistical quality control. 2nd edn., New York, NY, John Wiley & Sons.

    Google Scholar 

  • MOTYKA, J., DOBRZAŇSKI, B. and ZAWADZKI, S. (1950). Wstępne badania nad łagami południowowschodniej Lubelszezyzny [Preliminary studies on meadows in the southeast of the province of Lublin]. Annales Universitatis Mariae Curie-Skłodowska Lublin-Polonia, Sectio E, 5, 367–447.

    Google Scholar 

  • NAPIER, J. (1614). Mirifici logarithmorum canonis descriptio [A description of the wonderful canon of logarithms]. Edinburgh, Andrew Hart.

    Google Scholar 

  • NAPIER, J. and BRIGGS, H. (1618). A description of the admirable table of logarithmes: with a declaration of the most plentifull, easie, and speedy use thereof in both kinds of trigonometry, as also in all mathematicall calculations [translated from Latin by E. WRIGHT]. London,. Simon Waterson.

    Google Scholar 

  • NAPIER, J. and MACDONALD, W.R. (1889). The construction of the wonderful canon of logarithms by John Napier [translated from Latin into English with notes and a catalogue of the various editions of Napier’s works by W.R. MACDONALD]. Edinburgh, William Blackwood.

    Google Scholar 

  • NAUR, P. (ed.) (1960). Revised report on the Algorithmic Language ALGOL 60. Communications of the ACM, 3, 299–314.

    Google Scholar 

  • NETTLETON, L.L. (1940). Geophysical prospecting for oil. New York, McGraw-Hill Book Company.

    Google Scholar 

  • NEWBURGH, R., PEIDLE, J. and RUECKNER, W. (2006). Einstein, Perrin, and the reality of atoms: 1905 revisited. American Journal of Physics, 74, 478–481.

    Article  Google Scholar 

  • NIKIAS, C.L. and PETROPULU, A.P. (1993). Higher-order spectra analysis: A nonlinear signal processing framework. Englewood Cliffs, NJ, Prentice-Hall.

    Google Scholar 

  • OH, S.-H. and KWON, B.-D. (2001). Geostatistical approach to Bayesian inversion of geophysical data: Markov chain Monte Carlo method. Earth Planets Space, 53, 777–791.

    Article  Google Scholar 

  • OLSEN, E.C. and MILLER, R.L. (1951). Relative growth in palaeontological studies. Journal of Palaeontology, 25, 212–223.

    Google Scholar 

  • OLSEN, E.C. and MILLER, R.L. (1958). Morphological integration. Chicago, IL, University of Chicago Press.

    Google Scholar 

  • ONSTOTT, T.C. (1980). Application of the Bingham distribution function in paleomagnetic studies. Journal of Geophysical Research, 85, 1500–1510.

    Article  Google Scholar 

  • OSTING, H.J. (1956). The study of plant communities. San Francisco, CA, Freeman.

    Google Scholar 

  • PANZA, G.F. (1976). Phase velocity determination of fundamental Love and Rayleigh waves. Pure and Applied Geophysics, 114, 753–763.

    Article  Google Scholar 

  • PARK, J., LINDBERG, C.R. and VERNON, R.L. (1987). Multitaper spectral analysis of high-frequency seismograms. Journal of Geophysical Research, 92, 12675–12684.

    Article  Google Scholar 

  • PARKER, R.L. (1977). Understanding inverse theory. Annual Review of Earth and Planetary Sciences, 5, 35–64.

    Article  Google Scholar 

  • PARZEN, E. (1957). On consistent estimates of the spectrum of a stationary time series. The Annals of Mathematical Statistics, 28, 329–348.

    Article  Google Scholar 

  • PARZEN, E. (1961). Mathematical considerations in the estimation of spectra. Technometrics, 3, 167–190.

    Article  Google Scholar 

  • PARZEN, E. (1962). On the estimation of a probability density function and the mode. The Annals of Mathematical Statistics, 33, 1065–1076.

    Article  Google Scholar 

  • PEACOCK, H.B. (1924). Predicted transmission curves of acoustic wave filters. Physical Review, 23, 525–527.

    Article  Google Scholar 

  • PEARSON, K. (1894). Contributions to the mathematical theory of evolution. I. On the dissection of asymmetrical frequency curves. Philosophical Transactions of the Royal Society, London, ser. A, 185, 71–110.

    Google Scholar 

  • PEARSON, K. (1920). Notes on the history of correlation. Biometrika, 13, 25–45.

    Article  Google Scholar 

  • PERLIS, A.J. and SAMELSON, K. (1958). Preliminary report: International algebraic language. Communications of the ACM, 1, 8–22.

    Article  Google Scholar 

  • PERREY, A. (1847). Mémoire sur les tremblements de terre de la péninsule Italique [Memoir on the earth tremors of the Italian peninsula]. Mémoires couronnés et Mémoires des Savants Étrangers. Académie royale des Sciences et des Belles-Lettres de Bruxelles, 12, 1–145.

    Google Scholar 

  • PERRIN, J. (1908). L’agitation moléculaire et le mouvement brownien [Molecular agitation and Brownian motion.]. Comptes rendus des séances de l’Académie des sciences, Paris, 146, 967–970.

    Google Scholar 

  • PERSSON, L. (2003). Statistical tests for regional seismic phase characterizations. Journal of Seismology, 7, 19–33.

    Article  Google Scholar 

  • PLAYFAIR, W. and CORRY, J. (1786). The commercial and political atlas; representing, by means of stained copper-plate charts, the exports, imports, and general trade of England at a single view. To which are added, Charts of the revenue and debts of Ireland, done in the same manner. London, J. Debrett, G.G. and J. Robinson, J. Sewell.

    Google Scholar 

  • POINCARÉ, H. (1885). Sur l’équilibre d’une masse fluide animée d’un mouvement de rotation [On the equilibrium of a mass of fluid given a rotational movement.]. Acta Mathematica, 7, 159–380.

    Google Scholar 

  • POINCARÉ, H. (1902). Figures d’équilibre d’une masse fluide [Figures of equilibrium of a fluid mass]. Paris, Gauthier-Villars.

    Google Scholar 

  • POINCARÉ, H. (1908). Science et méthode [Science and method]. Paris, Flammarion.

    Google Scholar 

  • PRESS, W.H., FLANNERY, B.P., TEUKOLSKY, S.A. and VETTERLING, W.T. (1992). Backus-Gilbert method. In: PRESS, W.H., TEUKOLSKY, S.A., VETTERLING, W.T. and FLANNERY, B.P. (eds.). Numerical recipes in Fortran 77. The art of scientific computing. 2nd edn., Cambridge, Cambridge University Press, 806–809.

    Google Scholar 

  • PRESTON, F.W. and DAVIS, J.C. (1976). Sedimentary porous materials as a realisation of a stochastic process. In: MERRIAM, D.F. (ed.). Random processes in geology. Berlin, Springer-Verlag, 63–86.

    Chapter  Google Scholar 

  • QUIN, S.Q., JIAO, J.J. and LI, Z.G. (2006). Nonlinear evolutionary mechanisms of instability of plane-shear slope: Catastrophe, bifurcation, chaos and physical prediction. Rock mechanics and Rock Engineering, 39, 59–76.

    Article  Google Scholar 

  • RABINER, L.R., GOLD, B. and MCGONEGAL, C.A. (1970). An approach to the approximation problem for nonrecursive digital filters. IEEE Transactions on Audio Electroacoustics, AU-18, 83–106.

    Article  Google Scholar 

  • RAMSAY, J.G. (1964). The uses and limitations of beta-diagrams and pi-diagrams in the geometrical analysis of folds. Quarterly Journal of the Geological Society, London, 120, 435–454.

    Article  Google Scholar 

  • RAMSAY, J.G. (1967). Folding and fracturing of rocks. New York, McGraw-Hill.

    Google Scholar 

  • RAMSAY, J.G. and HUBER, M.I. (1983). The techniques of modern structural geology. Vol. 1: Strain analysis. London, Academic Press.

    Google Scholar 

  • RAMSAYER, G.R. and BONHAM-CARTER, G. (1974). Numerical classification of geologic patterns characterized by binary variables. Journal of the International Association for Mathematical Geology, 6, 59–72.

    Article  Google Scholar 

  • REIMANN, C., FILZMOSER, P. and GARRETT, R.G. (2005). Background and threshold: critical comparison of methods of determination. Science of the Total Environment, 346, 1–16.

    Article  Google Scholar 

  • REIMANN, C., FILZMOSER, P., GARRETT, R.G. and DUTTER, R. (2008). Statistical data analysis explained. Applied environmental statistics with R. Chichester, John Wiley & Sons.

    Chapter  Google Scholar 

  • RENDU, J.-M.M. (1976). Bayesian decision theory applied to mineral exploration. In: GUARASCIO, M., DAVID, D. and HUIJBREGTS, C. (eds.). Advanced geostatistics in the mining industry. Proceedings of the NATO Advances Study Institute held at the Istituto di Geologia Applicata of the University of Rome, Italy, 13–25 October 1975. Dordrecht, Reidel, 435–445.

    Chapter  Google Scholar 

  • RIAL, J.A. and ANACLERIO, C.A. (2000). Understanding nonlinear responses of the climate system to orbital forcing. Quaternary Science Reviews, 19, 1709–1722.

    Article  Google Scholar 

  • RICE, J.R. (1964). The approximation of functions. v. 1. Reading, MA, Addison-Wesley.

    Google Scholar 

  • RICHARDSON, W.A. (1923). The frequency-distribution of igneous rocks. Part II. The laws of distribution in relation to petrogenic theories. Mineralogical Magazine, 20, 1–19.

    Article  Google Scholar 

  • ROBINSON, E.A. (1967b). Statistical communication and detection with special reference to digital signal processing of radar and seismic signals. London, Griffin.

    Google Scholar 

  • ROBINSON, P. (1963). Preparation of Beta diagrams in structural geology by digital computer. American Journal of Science, 261, 913–928.

    Article  Google Scholar 

  • ROGERS, M.J. (1976). An evaluation of an Index of Affinity for comparing assemblages, in particular of Foraminifera. Palaeontology, 19, 503–515.

    Google Scholar 

  • ROSTIROLLA, S.P., MATTANA, A.C. and BARTOSZECK, M.K. (2003). Bayesian assessment of favorability for oil and gas prospects over the Reconcavo basin, Brazil. Bulletin of the American Association of Petroleum Geologists, 87, 647–666.

    Article  Google Scholar 

  • SACKIN, M.J., SNEATH, P.H.A. and MERRIAM, D.F. (1965). ALGOL program for cross-association of non-numeric sequences using a medium-size computer. Kansas Geological Survey Special Distribution Publication 23, Lawrence, KS, Kansas Geological Survey.

    Google Scholar 

  • SAMPSON, R.J. (1975). The SURFACE II graphics system. In: DAVIS, J.C. and MCCULLAGH, M.J. (eds.). Display and Analysis of Spatial Data. New York, NY, John Wiley & Sons, 244–266.

    Google Scholar 

  • SANDER, B. (1948). Einführung in die Gefügekunde der geologischen Körper. I. Allgemeine Gefügekunde und Arbeiten in Bereich Handstuck bis Profil [Introduction to the structure of geological bodies. I. General study of fabrics, work on a scale from profile to hand-specimen]. Vienna, Springer-Verlag.

    Google Scholar 

  • SANDER, B. (1970). An introduction to the fabrics of geological bodies. Oxford [English translation by F.C. PHILLIPS and G. WINDSOR], Pergamon Press.

    Google Scholar 

  • SARMA, D.D. (1990). Stochastic modelling of gold mineralization in the Champion lode system of Kolar gold fields (India). Mathematical Geology, 22, 261–279.

    Article  Google Scholar 

  • SAUVEUR, J. (1743). Système général des intervalles des sons [A general system of sound intervals]. Histoires de l’Académie royale des Sciences, Paris, for 1701, 299–366.

    Google Scholar 

  • SCALES, J.A. and SNIEDER, R. (1997). To Bayes or not to Bayes? Geophysics, 62, 1045–1046.

    Article  Google Scholar 

  • SCHMID, K. (1934). Biometrische Untersuchungen an Foriniferen aus dem Phacen von Ceram [Biometric studies of foraminifera from the Stages of Ceram]. Eclogae Geologicae Helvetiae, 27, 46–128.

    Google Scholar 

  • SCHMIDT, W. (1925). Gefugestatistik [Microstructural (petrofabric) statistics]. Tschermak’s Mineralogische und Petrographische Mitteilungen, 38, 392–423.

    Google Scholar 

  • SCHOENBERG, I.J. (1946). Contributions to the problem of approximation of equidistant data by analytic functions. Quarterly of Applied Mathematics, 4, 45–99, 112–141.

    Article  Google Scholar 

  • SCHOENBERG, I.J. (1967). On spline functions. In: SHISHA, O. (ed.). Inequalities. New York, NY, Academic Press, 255–291.

    Google Scholar 

  • SCHOENBERG, I.J. (1971). On equidistant cubic spline interpolation. Bulletin of the American Mathematical Society, 77, 1039–1044.

    Article  Google Scholar 

  • SEGUI, W.T. (1973). Computer programs for the solution of systems of linear algebraic equations. Numerical Methods in Engineering, 7, 479–490.

    Article  Google Scholar 

  • SENGER, K., BÜNZ, S. and MIENERT, J. (2010). First-order estimation of in-place gas resources at the Nyegga gas hydrate prospect, Norwegian Sea. Energies, 3, 2001–2026.

    Article  Google Scholar 

  • SEPKOSKI, D. (2012). Rereading the fossil record: The growth of paleobiology as an evolutionary discipline. Chicago, IL, University of Chicago Press.

    Book  Google Scholar 

  • SHANNON, C.E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423, 623–656.

    Article  Google Scholar 

  • SHAPIRO, F.R. (1987). Entomology of the computer bug: History and folklore. American Speech, 62, 376–378.

    Article  Google Scholar 

  • SHAW, R.F. (1950). Arithmetic operations in a binary computer. The Review of Scientific Instruments, 21, 687–693.

    Article  Google Scholar 

  • SHERIFF, R.E.(1984). Encyclopedic dictionary of exploration geophysics. 2nd edn., Tulsa, Society of Exploration Geophysicists.

    Google Scholar 

  • SMART, J.S. (1979). Joint distribution functions for link lengths and drainage area. In: MERRIAM, D.F. (ed.). Random processes in geology. Berlin, Springer-Verlag, 112–123.

    Google Scholar 

  • SNIEDER, R. (1991). An extension of the Backus-Gilbert theory to nonlinear inverse problems. Inverse Problems, 7, 409–433.

    Article  Google Scholar 

  • SOAL, S.G. (1965). Some statistical aspects of ESP [extrasensory perception]. In: WOLSTENHOLME, G.E.W. and MILLAR, E.C.P. (eds.). Extrasensory perception. A CIBA Foundation symposium. New York, NY, The Citadel Press, 80–101.

    Google Scholar 

  • SOKAL, R.R. and SNEATH, P.H.A. (1963). Principles of numerical taxonomy. San Francisco, CA, Freeman.

    Google Scholar 

  • SOLOW, A.R. (1985). Bootstrapping correlated data. Journal of the International Association for Mathematical Geology, 17, 769–775.

    Article  Google Scholar 

  • SOLOW, A.R. (2001). An empirical Bayes analysis of volcanic eruptions. Mathematical Geology, 33, 95–102.

    Article  Google Scholar 

  • SOMERFIELD, P.J. (2008). Identification of the Bray-Curtis similarity index: Comment on Yoshioka (2008). Marine Ecology Progress, 372, 303–306.

    Article  Google Scholar 

  • SPERO, H.J. and WILLIAMS, D.F. (1989). Opening the Carbon isotope ‘vital effect’ black box. 1. Seasonal temperatures in the euphotic zone. Paleoceanography, 4, 593–602.

    Article  Google Scholar 

  • SPICHAK, V.V. and SIZOV, Y. P. (2006). Three-dimensional Bayesian inversion of audiomagnetotelluric data in the salinity zone of a coastal groundwater reservoir. Izvestiya Physics of the Solid Earth, 42, 330–333.

    Article  Google Scholar 

  • STANLEY, C.R. (2006a). Numerical transformation of geochemical data: 1. Maximizing geochemical contrast to facilitate information extraction and improve data presentation. Geochemistry: Exploration, Environment, Analysis, 6, 69–78.

    Google Scholar 

  • STANLEY, C.R. (2006b). Numerical transformation of geochemical data: 2. Stabilizing measurement error to facilitate data interpretation. Geochemistry: Exploration, Environment, Analysis, 6, 79–96.

    Google Scholar 

  • STEBER, G.R. (1967). Simulation of band-pass and band-reject filters. Simulation, 8, 187–189.

    Article  Google Scholar 

  • STEPHENSON, W. and WILLIAMS, W.T. (1971). A study of the benthos of soft bottoms, Sek Harbour, New Guinea, using numerical analysis. Australian Journal of Marine and Freshwater Research, 22, 11–34.

    Article  Google Scholar 

  • STEWART, G.W. (1923). Acoustic wave filters. Attenuation and phase factors. Physical Review, 23, 520–524.

    Article  Google Scholar 

  • STRUTT, R.J. (1908). On the accumulation of helium in geological time. Proceedings of the Royal Society, London, ser. A, 81, 272–277.

    Google Scholar 

  • SWAN, A.R.H. and SANDILANDS, M. (1995). Introduction to geological data analysis. Oxford, Blackwell.

    Google Scholar 

  • TARANTOLA, A. (1984). Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49, 1259–1266.

    Article  Google Scholar 

  • TAUD, H. and PARROT, J.-F. (2005). Measurement of DEM [digital elevation model] roughness using the local fractal dimension. Géomorphologie, 11, 327–338.

    Article  Google Scholar 

  • TAUXE, L., KYLSTRA, N. and CONSTABLE, C. (1991). Bootstrap statistics for paleomagnetic data. Journal of Geophysical Research. Solid Earth, 96 (B7), 11723–11740.

    Google Scholar 

  • TEMPLE, J.T. (1982). Ordination of palaeontological data. In: HORDER, M.F. and HOWARTH, R.J. (eds.). Computer applications in geology I and II. Miscellaneous Paper no. 14. London, The Geological Society, 224–236.

    Google Scholar 

  • TEMPLE, J.T. (1992). The progress of quantitative methods in palaeontology. Palaeontology, 35, 475–484.

    Google Scholar 

  • ten DAM, A. (1947). Micropaleontological facies-logs. The Micropalaeontologist, 1, 13–15.

    Article  Google Scholar 

  • THOM, R. (1972). Stabilité structurelle et morphogénèse: Essai d’une théorie générale des modèles [Structural stability and morphogenesis. Outline of a general theory of models]. Paris, Édiscience.

    Google Scholar 

  • THOM, R. (1975). Structural stability and morphogenesis. Outline of a general theory of models [translated by D.H. FOWLER]. Reading, MS, W.A. Benjamin.

    Google Scholar 

  • THOMSON, G.H. (1920). A new point of view in the interpretation of threshold measurements in psychophysics. Psychological Review, 27, 300–307.

    Article  Google Scholar 

  • THOMSON, W. [Lord Kelvin] and TAIT, P.G. (1878). Treatise on natural philosophy. 2nd edn., Cambridge, Cambridge University Press.

    Google Scholar 

  • TILL, R., HOPKINS, D.T. and MCCANN, C. (1971). A collection of computer programs in BASIC for use in geology and geophysics. Reading University Geology Report no. 5, Reading, Reading University.

    Google Scholar 

  • TUKEY, J.W. (1953). The spectral representation and transformation properties of the higher moments of stationary time series [unpublished manuscript]. In: BRILLINGER, D.R. (ed.). (1984) The collected works of John W. Tukey. Vol. I. Time series: 1949–1964. Pacific Grove, CA, Wadsworth, 165–184.

    Google Scholar 

  • TUKEY, J.W. (1959b). An introduction to the measurement of spectra. In: GRENANDER, U. (ed.). Probability and statistics. The Harald Cramér volume. New York, NY, John Wiley & Sons, 300–330.

    Google Scholar 

  • TUKEY, J.W. (1977). Exploratory data analysis. Reading, MS, Addison-Wesley.

    Google Scholar 

  • TUKEY, J.W. and HAMMING, R. W. (1949). Measuring noise color. I. Memorandum MM-49-110-119, 1 December 1949, Murray Hill, NJ, Bell Telephone Laboratory, 1–120 [Reprinted in: BRILLINGER, D.R. (ed.) (1984). The collected works of John W. Tukey. Vol. 1. Time series: 1949–1964. Wadsworth, Pacific Grove, CA, 1–127].

    Google Scholar 

  • TURCOTTE, D.L. (1997). Fractals and chaos in geology and geophysics. 2nd edn., Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • TURNER, F.J. and WEISS, L.E. (1963). Structural analysis of metamorphic tectonites. New York, NY, McGraw-Hill.

    Google Scholar 

  • TUSTIN, A. (1947). A method of analysing the behaviour of linear system in terms of time series. Journal of the Institute of Electrical Engineers, 94 (Part IIA), 130–142.

    Google Scholar 

  • ULRYCH, T.J. (1972). Maximum entropy power spectrum of truncated sinusoids. Journal of Geophysical Research, 77, 1396–1400.

    Article  Google Scholar 

  • ULRYCH, T.J., SMYLIE, D.E., JENSEN, O.G. and CLARKE, G.K.C. (1973). Predictive filtering and smoothing of short records by using maximum entropy. Journal of Geophysical Research, 78, 4959–4964.

    Article  Google Scholar 

  • USPENSKY, J.V. (1937). Introduction to mathematical probability. New York, NY, McGraw-Hill.

    Google Scholar 

  • van der BAAN, M. (2006). PP/PS Wavefield separation by independent component analysis. Geophysical Journal International, 166, 339–348.

    Article  Google Scholar 

  • van HORIK, M. and GOODCHILD, M.F. (1975). Program Documentation: SURF General Surface Interpolation Package. Macrogeographic Systems Research Workshop, Department of Geography, University of Western Ontario, London, Ontario.

    Google Scholar 

  • VAUGHAN, S., BAILEY, R.J. and SMITH, D.G. 2011. Detecting cycles in stratigraphic data: Spectral analysis in the presence of red noise. Paleogeography, 26, PA4211 [online: http://dx.doi.org/10.1029/2011PA002195].

  • VERE-JONES, D. (1976). A branching model for crack propagation. Pure and Applied Geophysics, 114, 711–725.

    Article  Google Scholar 

  • VERE-JONES, D. (1977). Statistical theories of crack propagation. Journal of the International Association for Mathematical Geology, 9, 455–481.

    Article  Google Scholar 

  • VISTELIUS, A.B. (1961). Sedimentation time trend functions and their application for correlation of sedimentary deposits. Journal of Geology, 69, 703–728.

    Article  Google Scholar 

  • VISTELIUS, A.B. (1972). Ideal granite and its properties. I. The stochastic model. Journal of the International Association for Mathematical Geology, 4, 89–102.

    Google Scholar 

  • VISTELIUS, A.B. (1980). Osnovy matematičeskoj geologii [Essential mathematical geology]. Leningrad, AN SSSR Izdatel’stvo nauk.

    Google Scholar 

  • VISTELIUS, A.B. (1992). Principles of mathematical geology [translated by S.N. BANERGEE]. Dordrecht, Kluwer.

    Google Scholar 

  • von NEUMANN, J. (1945). The first draft report on the EDVAC. Contract no. W-670-ORD-4926 [Unpublished]. Moore School of Electrical Engineering, University of Pennsylvania [Reprinted, GODFREY, M.D. (ed.), 1993. IEEE Annals on the History of Computing, 15, 27–75].

    Google Scholar 

  • WATSON, H.W. and GALTON, F. (1875). On the probability of the extinction of families. Journal of the Anthropological Institute of Great Britain, 4, 138–144.

    Article  Google Scholar 

  • WEEDON, G.P. (2003). Time series analysis and cyclostratigraphy. Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • WHITTEN, E.H.T. (1963). A surface-fitting program suitable for testing geological models which involve areally-distributed data. Technical Report no. 2 of ONR Task no. 389-135, Contract Nr. 1228(26). Office of Naval Research Geography Branch, Evanston, IL, Northwestern University.

    Google Scholar 

  • WIDOM, H. (1997). Wiener-Hopf integral equations. In: JERISON, D., SINGER, I.M. and STROOCK, D.W. (eds.). The Legacy of Norbert Wiener: a Centennial Symposium in Honor of the 100th anniversary of Norbert Wiener’s birth. Proceedings of the American Mathematical Society Symposia in Pure Mathematics 60. Providence, RI, American Mathematical Society, 391–405.

    Google Scholar 

  • WIENER, N. (1923). Differential space. Journal of Mathematics and Physics, 2, 131–174.

    Article  Google Scholar 

  • WIENER, N. (1926). The harmonic analysis of irregular motion. Journal of Mathematics and Physics, 5, 99–121, 158–189.

    Article  Google Scholar 

  • WIENER, N. (1933). The Fourier integral and certain of its applications. Cambridge, Cambridge University Press.

    Google Scholar 

  • WIENER, N. (1949). Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications. Cambridge, MA, Technology Press, Massachusetts Institute of Technology.

    Google Scholar 

  • WIENER, N. and HOPF, E. (1931). Ueber eine Klasse singulärer Integralgleichungen [On a class of singular integral equations]. Sitzungsberichte der Preussichen Akademie der Wissenschaften Physikalisch-Mathematische Klasse, Berlin, 1931, 696–706.

    Google Scholar 

  • WIGGINS, R.A. (1966). ω-κ filter design. Geophysical Prospecting, 14, 427–440.

    Article  Google Scholar 

  • WILK, M.B., GNANADESIKAN, R. and HUYETT, M.J. (1962). Estimation of parameters of the Gamma distribution using order statistics. Biometrika, 49, 525–545.

    Article  Google Scholar 

  • WINTNER, A. (1934). On analytic convolutions of Bernoulli distributions. American Journal of Mathematics, 56, 659–663.

    Article  Google Scholar 

  • WOLD, H. (1938). A study in the analysis of stationary time series. Stockholm, Almqvist & Wiksell.

    Google Scholar 

  • WOOD, L.C. (1968). A review of digital pass filtering. Reviews of Geophysics, 6, 73–97.

    Article  Google Scholar 

  • WRINCH, D.M. and JEFFREYS, H. (1919). On some aspects of the theory of probability. Philosophical Magazine, ser. 6, 38, 715–731.

    Article  Google Scholar 

  • WUENSCHEL, P.C. (1960). Seismogram synthesis including multiples and transmission coefficients. Geophysics, 25, 106–129.

    Article  Google Scholar 

  • YANG, C.-S. and KOUWE, W.F.P. (1995). Wireline log-cyclicity analysis as a tool for dating and correlating barren strata: an example from the Upper Rotliegend of The Netherlands. In: DUNAY, R.E. and HAILWOOD, E.A. (eds.). Non-biostratigraphical methods of dating and correlation. Special Publication 89. London, The Geological Society, 237–259.

    Google Scholar 

  • YULE, G.U. (1911). An introduction to the theory of statistics. London, Griffin.

    Book  Google Scholar 

  • ZOBEL, O.J. (1923a). Electrical wave filter. United States Patent Office, Patent number 1,615,212 [filed 1923, granted 1927].

    Google Scholar 

  • ZOBEL, O.J. (1923b). Theory and design of uniform and composite electric wave filters. Bell Systems Technical Journal, 2, 1–46.

    Article  Google Scholar 

  • ZOBEL, O.J. (1923c). Transmission characteristics of electric wave filters. Bell System Technical Journal, 2, 567–620.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Howarth, R.J. (2017). B. In: Dictionary of Mathematical Geosciences . Springer, Cham. https://doi.org/10.1007/978-3-319-57315-1_2

Download citation

Publish with us

Policies and ethics