Skip to main content

Controlling the Stability of Steady States in Continuous Variable Quantum Systems

  • Chapter
  • First Online:
Control of Self-Organizing Nonlinear Systems

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

For the paradigmatic case of the damped quantum harmonic oscillator we present two measurement-based feedback schemes to control the stability of its fixed point. The first scheme feeds back a Pyragas-like time-delayed reference signal and the second uses a predetermined instead of time-delayed reference signal. We show that both schemes can reverse the effect of the damping by turning the stable fixed point into an unstable one. Finally, by taking the classical limit \(\hbar \rightarrow 0\) we explicitly distinguish between inherent quantum effects and effects, which would be also present in a classical noisy feedback loop. In particular, we point out that the correct description of a classical particle conditioned on a noisy measurement record is given by a non-linear stochastic Fokker-Planck equation and not a Langevin equation, which has observable consequences on average as soon as feedback is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The situation of an unstable fixed point would be modeled by exchanging the operators \(\hat{a}\) and \(\hat{a}^\dagger \) in the dissipators. This would correspond to a negative \(\kappa \) in the equation for the mean position and momentum. The feedback schemes presented here also work in that case.

  2. 2.

    We explicitly adopt a Bayesian probability theory point of view in which probabilities (or more generally the density matrix \(\hat{\rho }\)) describe only (missing) human information. Especially, different observers (with possibly different access to measurement records) would associate different states \(\hat{\rho }\) to the same system.

  3. 3.

    In fact, in Ref. [30] they did not only feed back the results from a position measurement, but also from a momentum measurement. The simultaneous weak measurement of position and momentum can be also incorporated into our framework [17, 31, 32], but this would merely add additional terms without changing the overall message.

  4. 4.

    Pay attention to the fact that we are using an Itô stochastic differential equation where the ordinary chain rule of differentiation does not apply. Instead, we have for instance for the stochastic change of the position variance \(dV_{x,c} = d\langle x^2\rangle _c - 2{\langle {x}\rangle }_c d{\langle {x}\rangle }_c - (d{\langle {x}\rangle }_c)^2\).

  5. 5.

    We remark that a Gaussian state in QM, i.e., a system described by a Gaussian Wigner function, might still exhibit true quantum features like entanglement or squeezing [2, 3].

  6. 6.

    Indeed, if we would choose the feedback operator \(\hat{z} = k\hat{x}\), the resulting differential equations for \(\langle x\rangle \) and \(\langle p\rangle \) would exactly resemble the differential equation of a classical harmonic oscillator with sinusoidal driving force.

  7. 7.

    We can obtain this result by computing the steady state of Eqs. (15.56)–(15.58) where we first send \(k\rightarrow 0\) and then \(\gamma \rightarrow 0\).

  8. 8.

    This is true at least in our context. In principle, it is of course possible to construct classical measurements, which perturb the system, too [6].

  9. 9.

    The complete description of an underdamped particle (i.e., a particle descibed by its position x and momentum p), which is based on a continuous measurement of its position x alone, Eq. (15.62), faces the additional challenge that we have to first estimate the momentum p based on the noisy measurement results.

References

  1. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  MATH  Google Scholar 

  2. S.L. Braunstein, P. van Loock, Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  Google Scholar 

  3. C. Weedbrook, S. Pirandola, R. García-Patrón, N.J. Cerf, T.C. Ralph, J.H. Shapiro, S. Lloyd, Rev. Mod. Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  4. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  5. L.D. Faddeev, O.A. Yakubovskii, Lectures on Quantum Mechanics for Mathematics Students, Student Mathematical Library, vol. 47. (American Mathematical Society, 2009)

    Google Scholar 

  6. H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  7. W.P. Smith, J.E. Reiner, L.A. Orozco, S. Kuhr, H.M. Wiseman, Phys. Rev. Lett. 89, 133601 (2002)

    Article  ADS  Google Scholar 

  8. P. Bushev, D. Rotter, A. Wilson, F. Dubin, C. Becher, J. Eschner, R. Blatt, V. Steixner, P. Rabl, P. Zoller, Phys. Rev. Lett. 96, 043003 (2006)

    Article  ADS  Google Scholar 

  9. G.G. Gillett, R.B. Dalton, B.P. Lanyon, M.P. Almeida, M. Barbieri, G.J. Pryde, J.L. OBrien, K.J. Resch, S.D. Bartlett, A.G. White. Phys. Rev. Lett. 104, 080503 (2010)

    Google Scholar 

  10. C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J.M. Raimond, S. Haroche, Nature (London) 477, 73 (2011)

    Article  ADS  Google Scholar 

  11. R. Vijay, C. Macklin, D.H. Slichter, S.J. Weber, K.W. Murch, R. Naik, A.N. Korotkov, I. Siddiqi, Nature (London) 490, 77 (2012)

    Article  ADS  Google Scholar 

  12. D. Riste, C.C. Bultink, K.W. Lehnert, L. DiCarlo, Phys. Rev. Lett. 109, 240502 (2012)

    Article  ADS  Google Scholar 

  13. H.J. Carmichael, An Open Systems Approach to Quantum Optics (Lecture Notes, Springer, Berlin, 1993)

    MATH  Google Scholar 

  14. G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  15. V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  16. K. Jacobs, D.A. Steck, Contemp. Phys. 47, 279 (2006)

    Article  ADS  Google Scholar 

  17. A. Barchielli, L. Lanz, G.M. Prosperi, Nuovo Cimento B 72, 79 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Barchielli, L. Lanz, G.M. Prosperi, Found. Phys. 13, 779 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  19. C.M. Caves, G.J. Milburn, Phys. Rev. A 36, 5543 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  20. H.M. Wiseman, G.J. Milburn, Phys. Rev. A 47, 642 (1993)

    Article  ADS  Google Scholar 

  21. A.C. Doherty, K. Jacobs, Phys. Rev. A 60, 2700 (1999)

    Article  ADS  Google Scholar 

  22. C. Gardiner, P. Zoller, Quantum Noise (Springer-Verlag, Berlin Heidelberg, 2004)

    MATH  Google Scholar 

  23. H.M. Wiseman, G.J. Milburn, Phys. Rev. Lett. 70, 548 (1993)

    Article  ADS  Google Scholar 

  24. H.M. Wiseman, G.J. Milburn, Phys. Rev. A 49, 1350 (1994)

    Article  ADS  Google Scholar 

  25. H.M. Wiseman, Phys. Rev. A 49, 2133 (1994)

    Article  ADS  Google Scholar 

  26. M. Hillery, R.F. O’Connell, M.O. Scully, E. Wigner, Phys. Rep. 106, 121 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  27. H.J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer, New York, 1999)

    Book  MATH  Google Scholar 

  28. C. Zachos, D. Fairlie, T. Curtright (eds.). Quantum mechanics in phase space: an overview with selected papers (World Scientific, vol. 34, 2005)

    Google Scholar 

  29. H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer, Berlin Heidelberg, 1984)

    Book  MATH  Google Scholar 

  30. P. Hövel, E. Schöll, Phys. Rev. E 72, 046203 (2005)

    Article  Google Scholar 

  31. E. Arthurs, J.L. Kelly, Bell Syst. Tech. J. 44, 725 (1965)

    Article  Google Scholar 

  32. A.J. Scott, G.J. Milburn, Phys. Rev. A 63, 042101 (2001)

    Article  ADS  Google Scholar 

  33. K. Pyragas, Phys. Lett. A 170, 421 (1992)

    Article  ADS  Google Scholar 

  34. E. Schöll, H.G. Schuster (eds.), Handbook of Chaos Control (Wiley-VCH, Weinheim, 2007)

    MATH  Google Scholar 

  35. V. Flunkert, I. Fischer, E. Schöll (eds.). Dynamics, control and information in delay-coupled systems: an overview. Phil. Trans. R. Soc. A, 371, 1999 (2013)

    Google Scholar 

  36. S.J. Whalen, M.J. Collett, A.S. Parkins, H.J. Carmichael, Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), IEEE pp. 1756–1757 (2011)

    Google Scholar 

  37. A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, A. Knorr, Phys. Rev. Lett. 110, 013601 (2013)

    Article  ADS  Google Scholar 

  38. F. Schulze, B. Lingnau, S.M. Hein, A. Carmele, E. Schöll, K. Lüdge, A. Knorr, Phys. Rev. A 89, 041801(R) (2014)

    Article  ADS  Google Scholar 

  39. S.M. Hein, F. Schulze, A. Carmele, A. Knorr, Phys. Rev. Lett. 113, 027401 (2014)

    Article  ADS  Google Scholar 

  40. A.L. Grimsmo, A.S. Parkins, B.S. Skagerstam, New J. Phys. 16, 065004 (2014)

    Article  ADS  Google Scholar 

  41. W. Kopylov, C. Emary, E. Schöll, T. Brandes, New J. Phys. 17, 013040 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  42. A.L. Grimsmo, Phys. Rev. Lett. 115, 060402 (2015)

    Article  ADS  Google Scholar 

  43. J. Kabuss, D.O. Krimer, S. Rotter, K. Stannigel, A. Knorr, A. Carmele, arXiv:1503.05722

  44. W.H. Zurek, S. Habib, J.P. Paz, Phys. Rev. Lett. 70, 1187 (1993)

    Article  ADS  Google Scholar 

  45. G.J. Milburn, Quantum Semiclass. Opt. 8, 269 (1996)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

PS wishes to thank Philipp Hövel, Lina Jaurigue and Wassilij Kopylov for helpful discussions about time-delayed feedback control. Financial support by the DFG (SCHA 1646/3-1, SFB 910, and GRK 1558) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Strasberg .

Editor information

Editors and Affiliations

Appendix

Appendix

We want to show that the stochastic FPE, which in general describes the incomplete state of knowledge of an observer, reduces to a Langevin equation in the error-free limit, i.e., in the limit in which we have indeed complete knowledge about the state of the system. Because we are only interested in a proof of principle here, we will consider the simplified situation of an overdamped particle.Footnote 9 The Langevin equation of an overdamped Brownian particle in an external potential U(x) is usually given as (see, e.g., [29])

$$\begin{aligned} \dot{x}(t) = -\frac{2}{\kappa }U'(x) + \sqrt{\frac{T}{\kappa }} \xi (t) \end{aligned}$$
(15.66)

with \(U'(x) \equiv \frac{\partial U(x)}{\partial x}\) and the Gaussian white noise \(\xi (t) \equiv \frac{dW(t)}{dt}\). Furthermore, note that our friction constant is \(\frac{\kappa }{2}\) and not—as it is often denoted—\(\gamma \) because we use \(\gamma \) already for the measurement rate. Now, it is important to remark that at this point Eq. (15.66) simply describes a convenient numerical tool to simulate a stochastic process. By the mathematical rules of stochastic calculus it is guaranteed that the Langevin equation gives the same averages as the corresponding FPE, i.e., the ensemble average \(\mathbb {E}[f(x)]\) over all noisy trajectories for some function f(x) is equal to the expectation value \(\langle f(x)\rangle \) taken with respect to the solution of the FPE.

In Sect. 15.5 we have suggested that the correct state of the system based on a noisy position measurement is given by the stochastic FPE (15.64), which for an overdamped particle becomes (see also Ref. [45])

$$\begin{aligned} P_c(x,t+dt) = \left\{ 1 + \mathcal{{L}}_0^\text {cl} dt + \sqrt{\frac{2\gamma }{\sigma }}(x-\langle x\rangle _c) dW(t)\right\} P_c(x,t) \end{aligned}$$
(15.67)

with [29]

$$\begin{aligned} \mathcal{{L}}_0^\text {cl} = \frac{\partial }{\partial x}\left( \frac{2U'(x)}{\kappa } + \frac{\partial }{\partial x}\frac{2T}{\kappa }\right) . \end{aligned}$$
(15.68)

Furthermore, we have also claimed that the parameter \(\sigma \) in (15.62) quantifies the error of the measurement. This suggests that we should be able to recover the Langevin Eq. (15.66) in the limit \(\sigma \rightarrow 0\) in which we can observe the particle with infinite precision.

To show this we compute the expectation value of the position according to Eq. (15.67):

$$\begin{aligned} d{\langle {x}\rangle }_c(t) = -\frac{2}{\kappa }{\langle {U'(x)}\rangle }_c dt + \sqrt{\frac{2\gamma }{\sigma }} V_c(t) dW(t) \end{aligned}$$
(15.69)

where \(V_c = {\langle {x^2}\rangle }_c - {\langle {x}\rangle }_c^2\) denotes the variance of the particles position. Because the conditional variance enters this equation, we compute its time evolution, too:

$$\begin{aligned} dV_c =&-\frac{4}{\kappa }\left[ {\langle {xU'(x)}\rangle }_c(t) - {\langle {x}\rangle }_c(t){\langle {U'(x)}\rangle }_c(t)\right] dt + \frac{4T}{\kappa }dt - \frac{2\gamma }{\sigma }V_c^2 dt \\&+ \sqrt{\frac{2\gamma }{\sigma }}\left\langle [x-{\langle {x}\rangle }_c(t)]^3\right\rangle dW(t). \nonumber \end{aligned}$$
(15.70)

To make analytical progress we now need two assumptions. First, we will assume that \(P_c(x,t)\) is a Gaussian probability distribution. In fact, because the measurement tends to localize the probability distribution and it is itself modeled as a Gaussian process, this assumption seems reasonable. In addition, we expect \(P_c(x,t)\) to become a delta-distribution in the limit \(\sigma \rightarrow 0\), which is a Gaussian distribution, too. This assumption allows us to drop the stochastic term in Eq. (15.70). Second, within the variance of \(P_c(x,t)\) we assume that we can expand U(x) in a Taylor series and approximate it by a quadratic function \(ax^2 + bx +c\). This implies \({\langle {xU'(x)}\rangle }_c(t) \approx a{\langle {x^2}\rangle }_c(t) + b{\langle {x}\rangle }_c(t)\). In fact, this assumption seems also reasonable because we expect the measurement to be precise enough such that we can locally resolve the evolution of the particle sufficiently well (especially for small \(\sigma \)); or to put it differently: a measurement only makes sense if the conditional variance \(V_c\) of \(P_c(x,t)\) is small enough. Using this approximation, too, we can then write Eq. (15.70) as

$$\begin{aligned} \frac{d}{dt}V_c(t) = \frac{4\kappa }{2} - \frac{4a}{\kappa }V_c - \frac{2\gamma }{\sigma }V_c^2. \end{aligned}$$
(15.71)

The only physical steady state solution of this equation is

$$\begin{aligned} \lim _{t\rightarrow \infty } V_c(t) = \frac{a\sigma }{\gamma \kappa }\left( \sqrt{1 + \frac{2T\gamma \kappa }{a^2\sigma }} - 1\right) . \end{aligned}$$
(15.72)

Inserting this into Eq. (15.69) yields

$$\begin{aligned} d{\langle {x}\rangle }_c(t) = -\frac{2}{\kappa }{\langle {U'(x)}\rangle }_c dt + \frac{a}{\kappa } \sqrt{\frac{2\sigma }{\gamma }} \left( \sqrt{1 + \frac{2T\gamma \kappa }{a^2\sigma }} - 1\right) dW(t). \end{aligned}$$
(15.73)

In this equation we can take the limit \(\sigma \rightarrow 0\) such that

$$\begin{aligned} d{\langle {x}\rangle }^0_c(t) = -\frac{2}{\kappa }{\langle {U'(x)}\rangle }^0_c dt + \sqrt{\frac{4T}{\kappa }} dW(t), \end{aligned}$$
(15.74)

where we introduced a superscript 0 on all expectation values to denote the error-free limit. This equation looks already very similar to the LE (15.66). In fact, mathematically this is the LE since from Eq. (15.62) we can see that the measurement result becomes for \(\sigma \rightarrow 0\) \(dI(t) = {\langle {x}\rangle }_c^{0}(t) dt\). This implies that the measurement result is deterministic and not stochastic anymore, which is only compatible if the associated probability distribution \(P_c(x,t)\) is a delta distribution \(\delta (x-x^*)\) where \(x^*\) describes the true instantaneous position of the particle without any uncertainty. Then, Eq. (15.69) becomes

$$\begin{aligned} d x^*(t) = -\frac{2}{\kappa }U'(x^*) dt + \sqrt{\frac{4T}{\kappa }} dW(t). \end{aligned}$$
(15.75)

Now, this equation is not just a numerical tool, but describes real physical objectivity because \(x^*\) coincides with the observed position in the lab. This distinction might seem very nitpicking, but it is of crucial importance if we want to perform feedback based on incomplete information.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Strasberg, P., Schaller, G., Brandes, T. (2016). Controlling the Stability of Steady States in Continuous Variable Quantum Systems. In: Schöll, E., Klapp, S., Hövel, P. (eds) Control of Self-Organizing Nonlinear Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-28028-8_15

Download citation

Publish with us

Policies and ethics