Skip to main content

Buckypaper-Cored Novel Photovoltaic Sensors for In-Situ Structural Health Monitoring of Composite Materials Using Hybrid Quantum Dots

  • Conference paper
Mechanics of Composite and Multi-functional Materials, Volume 7

Abstract

This paper reports on work developing an efficient distributed photovoltaic (PV) sensor using Buckypaper (BP) as working electrodes (WEs). BP is a thin sheet made from an aggregate of carbon nanotubes (CNTs) with the advantages of good mechanical properties, high electrical conductivity and flexibility. These advantages enable sensor flexibility and significantly improve the charge transfer speed. In addition to BPs, quantum dots (QD) have recently drawn attention in photoconversion systems due to high absorption coefficient, tunable band gap and multiple exciton generation (MEG) effects. Herein, this work proposes to apply np-TiO2/mp-TiO2/CdS/CdSe/N719 hybrid structure to realize both MEG effects and multiple electron transmission paths. Previous research has confirmed that a liquid electrolyte and glass cladding were also components of the assembly process which additionally improve sensor efficiency. However, the reported efficiency (>5 %) of the solid state sensor is ten times that seen in previous work utilizing metal-cored wire-shaped liquid PV sensor. This article also discusses surface characterization of nanowires and the functionalization of solid-solid interfacial properties. Moreover, the distributed PV sensor construction is the basis of ongoing work towards embedded smart composites with intrinsic triboluminescent/mechanoluminescent (TL/ML) features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Farrar, C.R., Worden, K.: An introduction to structural health monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365, 303–315 (2007)

    Article  Google Scholar 

  2. Worden, K., Farrar, C.R., Manson, G., Park, G.: The fundamental axioms of structural health monitoring. Proc. R. Soc. A Math. Phys. Eng. Sci. 463, 1639–1664 (2007)

    Article  Google Scholar 

  3. Sage, I., Badcock, R., Humberstone, L., Geddes, N., Kemp, M., Bourhill, G.: Triboluminescent damage sensors. Smart Mater. Struct. 8, 504–510 (1999)

    Article  Google Scholar 

  4. Kirikera, G.R., Shinde, V., Schulz, M.J., Ghoshal, A., Sundaresan, M., Allemang, R.: Damage localisation in composite and metallic structures using a structural neural system and simulated acoustic emissions. Mech. Syst. Signal Process. 21, 280–297 (2007)

    Article  Google Scholar 

  5. Walton, A.J.: Triboluminescence. Adv. Phys. 26, 887–948 (1977)

    Article  Google Scholar 

  6. http://scienceworld.wolfram.com/physics/Triboluminescence.html

  7. Chandra, B.P., Chandra, V.K., Jha, P.: Models for intrinsic and extrinsic fracto-mechanoluminescence of solids. J. Lumin. 135, 139–153 (2013)

    Article  Google Scholar 

  8. Chandra, B.P., Zink, J.I.: Triboluminescence and the dynamics of crystal fracture. Phys. Rev. B 21, 816–826 (1980)

    Article  Google Scholar 

  9. Aggarwal, M.D., Penn, B.G., Miller, J., Sadate, S., Batra, A.K.: Triboluminescent materials for smart optical damage sensors for space applications. In: CASI, NASA, (eds.) NASA/TM-2008-215410, M-1230 (2008)

    Google Scholar 

  10. Becquerel, A.E.: Mémoire sur les effets électriques produits sous l'influence des rayons solaires. Comptes Rendus des Séances Hebdomadaires 9, 561–567 (1839)

    Google Scholar 

  11. Einstein, A.: The Photoelectric Effect. Annalen der Physik, Wiley-VCH Verlag GmbH & Co. KgaA, Berlin (1905)

    Google Scholar 

  12. Oregan, B., Gratzel, M.: A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal Tio2 films. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  13. Gao, F., Wang, Y., Shi, D., Zhang, J., Wang, M.K., Jing, X.Y., Humphry-Baker, R., Wang, P., Zakeeruddin, S.M., Gratzel, M.: Enhance the optical absorptivity of nanocrystalline TiO(2) film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J. Am. Chem. Soc. 130, 10720–10728 (2008)

    Article  Google Scholar 

  14. Yu, Q.J., Wang, Y.H., Yi, Z.H., Zu, N.N., Zhang, J., Zhang, M., Wang, P.: High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states. ACS Nano 4, 6032–6038 (2010)

    Article  Google Scholar 

  15. Sauvage, F., Chen, D.H., Comte, P., Huang, F.Z., Heiniger, L.P., Cheng, Y.B., Caruso, R.A., Graetzel, M.: Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 4, 4420–4425 (2010)

    Article  Google Scholar 

  16. Nazeeruddin, M.K., Baranoff, E., Grätzel, M.: Dye-sensitized solar cells: a brief overview. Sol. Energy 85, 1172–1178 (2011)

    Article  Google Scholar 

  17. Uddin, M.J., Dickens, T., Yan, J., Chirayath, R., Olawale, D.O., Okoli, O.I.: Solid state dye-sensitized photovoltaic micro-wires (DSPMs) with carbon nanotubes yarns as counter electrode: synthesis and characterization. Sol. Energy Mater. Sol. Cells 108, 65–69 (2013)

    Article  Google Scholar 

  18. Fan, X., Chu, Z.Z., Wang, F.Z., Zhang, C., Chen, L., Tang, Y.W., Zou, D.C.: Wire-shaped flexible dye-sensitized solar cells. Adv. Mater. 20, 592–595 (2008)

    Article  Google Scholar 

  19. Zhang, S., Ji, C.Y., Bian, Z.Q., Liu, R.H., Xia, X.Y., Yun, D.Q., Zhang, L.H., Huang, C.H., Cao, A.Y.: Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes. Nano Lett. 11, 3383–3387 (2011)

    Article  Google Scholar 

  20. Yan, J., Uddin, M.J., Dickens, T.J., Daramola, D.E., Olawale, D.O., Okoli, O.I.: Tailoring the efficiency of 3D wire-shaped photovoltaic cells (WPVCs) by functionalization of solid-liquid interfacial properties. Phys. Status Solidi A 210, 7 (2013)

    Article  Google Scholar 

  21. Yan, J., Uddin, M.J., Dickens,T.J., Daramola, D.E., Okoli, O.I.: 3D wire-shaped dye-sensitized solar cells in solid state using carbon nanotube yarns with hybrid photovoltaic structure. Adv. Mater. Interfaces 1, (2014)

    Google Scholar 

  22. Future planes, cars may be made of ‘buckypaper’. Yahoo! Tech News. 2008-10-17. Retrieved 2008-10-18

    Google Scholar 

  23. Yoshida, H., Sugai, T., Shinohara Fabrication, H.: Purification, and characterization of double-wall carbon nanotubes via pulsed arc discharge. J. Phys. Chem. C 112, 19908–19915 (2008)

    Article  Google Scholar 

  24. Kukovecz, A., Smajda, R., Oze, M., Schaefer, B., Haspel, H., Konya, Z., Kiricsi, I.: Multiwall carbon nanotube films surface-doped with electroceramics for sensor applications. Phys. Status Solidi B Basic Solid State Phys. 245, 2331–2334 (2008)

    Article  Google Scholar 

  25. Simien, D., Fagan, J.A., Luo, W., Douglas, J.F., Migler, K., Obrzut, J.: Influence of nanotube length on the optical and conductivity properties of thin single-wall carbon nanotube networks. ACS Nano 2, 1879–1884 (2008)

    Article  Google Scholar 

  26. Pham, G.T., Park, Y.B., Wang, S.R., Liang, Z.Y., Wang, B., Zhang, C., Funchess, P., Kramer, L.: Mechanical and electrical properties of polycarbonate nanotube buckypaper composite sheets. Nanotechnology 19(32), 325705 (2008)

    Article  Google Scholar 

  27. Park, J.G., Li, S., Liang, R., Zhang, C., Wang, B.: Structural changes and Raman analysis of single-walled carbon nanotube buckypaper after high current density induced burning. Carbon 46, 1175–1183 (2008)

    Article  Google Scholar 

  28. Zhu, H.W., Wei, B.Q.: Assembly and applications of carbon nanotube thin films. J. Mater. Sci. Technol. 24, 447–456 (2008)

    Article  Google Scholar 

  29. Whitby, R.L.D., Fukuda, T., Maekawa, T., James, S.L., Mikhalovsky, S.V.: Geometric control and tuneable pore size distribution of buckypaper and buckydiscs. Carbon 46, 949–956 (2008)

    Article  Google Scholar 

  30. Enyashin, A.N., Ivanovskii, A.L.: Structural, elastic, and electronic properties of new superhard isotropic cubic crystals of carbon nanotubes. JETP Lett. 87, 321–325 (2008)

    Article  Google Scholar 

  31. Wang, D., Song, P.C., Liu, C.H., Wu, W., Fan, S.S.: Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 19(7), 075609 (2008)

    Article  Google Scholar 

  32. Han, J.T., Jeong, H.J., Lee, G.W.: Buckypaper from thin multiwalled carbon nanotubes. Proc. SPIE 7037, 703717 (2008)

    Article  Google Scholar 

  33. Zhu, W., Zheng, J.P., Liang, R., Wang, B., Zhang, C., Walsh, S., Au, G., Plichta, E.J.: Highly-efficient buckypaper-based electrodes for PEMFC. Proton Exchange Membrane Fuel Cells 8, Pts 1 and 2 16, 1615–1626 (2008)

    Google Scholar 

  34. Lee, Y.-L., Chi, C.-F., Liau, S.-Y.: CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell. Chem. Mater. 22, 922–927 (2009)

    Article  Google Scholar 

  35. Lee, Y.-L., Huang, B.-M., Chien, H.-T.: Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chem. Mater. 20, 6903–6905 (2008)

    Article  Google Scholar 

  36. Uddin, M.J., Davies, B., Dickens, T.J., Okoli, O.I.: Self-aligned carbon nanotubes yarns (CNY) with efficient optoelectronic interface for microyarn shaped 3D photovoltaic cells. Sol. Energy Mater. Sol. Cells 115, 166–171 (2013)

    Article  Google Scholar 

  37. Yan, J., Uddin, M.J., Dickens, T.J., Okoli, O.I.: Carbon nanotubes (CNTs) enrich the solar cells. Sol. Energy 96, 239–252 (2013)

    Article  Google Scholar 

  38. Olawale, D.O., Sullivan, G., Dickens, T., Tsalickis, S., Okoli, O.I., Sobanjo, J.O., Wang, B.: Development of a triboluminescence-based sensor system for concrete structures. Struct. Health Monit. 11, 139–147 (2012)

    Article  Google Scholar 

  39. Olawale, D.O., Dickens, T., Uddin, M.J., Okoli, O.O.: Triboluminescence multifunctional cementitious composites with in situ damage sensing capability. Proc. SPIE 834538 (2012)

    Google Scholar 

  40. Ito, S., Ha, N.L.C., Rothenberger, G., Liska, P., Comte, P., Zakeeruddin, S.M., Pechy, P., Nazeeruddin, M.K., Gratzel, M.: High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem. Commun. 38, 4004–4006 (2006)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the U.S. National Science Foundation through grant ID CMMI-0969413 and Air Force Research Laboratory. The authors would also like to thank Dr. Zhiyong (Richard) Liang (High-Performance Materials Institute, Florida, USA) for providing both random and aligned Buckypapers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okenwa I. Okoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Yan, J., Daramola, D.E., Antolinez, J.M., Okoli, N., Dickens, T.J., Okoli, O.I. (2016). Buckypaper-Cored Novel Photovoltaic Sensors for In-Situ Structural Health Monitoring of Composite Materials Using Hybrid Quantum Dots. In: Ralph, C., Silberstein, M., Thakre, P., Singh, R. (eds) Mechanics of Composite and Multi-functional Materials, Volume 7. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-21762-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21762-8_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21761-1

  • Online ISBN: 978-3-319-21762-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics