Skip to main content
Log in

Thermoelectric performance of PEDOT:PSS/Bi2Te3-nanowires: a comparison of hybrid types

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We herein compare the thermoelectric performance of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and Bi2Te3 nanowires (Bi2Te3-NWs) composites (PEDOT:PSS/Bi2Te3-NWs) including layer-by-layer assembly and hybrid structures by drop-cast as well as pellets. The Bi2Te3 nanowires are synthesized by a wet-chemical method. The hybrid PEDOT:PSS/Bi2Te3-NWs film with 10 wt% Bi2Te3-NWs has a higher electrical conductivity (401 S cm−1) and power factor (10.6 μW m−1 K−2) than that of layer-by-by layer assembly film. The Seebeck coefficient keeps mostly unchangeable for hybrid films as the increasing Bi2Te3-NWs which is different from layered films. The PEDOT:PSS/Bi2Te3-NWs pellets have a larger Seebeck coefficient (54 μV K−1) with a lower electrical conductivity (12.4 S cm−1) leading a lower power factor. The hybrid method for preparation of PEDOT:PSS/Bi2Te3-NWs film is a more efficient way for the enhancement of thermoelectric performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Du, S.Z. Shen, K. Cai, P.S. Casey, Prog. Polym. Sci. 37(6), 820–841 (2012)

    Article  Google Scholar 

  2. J.H. Xiong, F.X. Jiang, H. Shi, J.K. Xu, C.C. Liu, W.Q. Zhou, Q.L. Jiang, Z.Y. Zhu, Y.J. Hu, ACS Appl. Mater. Interfaces 7(27), 14917–14925 (2015)

    Article  Google Scholar 

  3. C. Cho, B. Stevens, J.H. Hsu, R. Bureau, D.A. Hagen, O. Regev, C. Yu, J.C. Grunlan, Adv. Mater. 27(19), 2996–3001 (2015)

    Article  Google Scholar 

  4. F. Roussel, R. Chen-Yu-King, M. Kuriakose, M. Depriester, A. Hadj-Sahraoui, C. Gors, A. Addad, J.-F. Brun, Synth. Met. 199, 196–204 (2015)

    Article  Google Scholar 

  5. L. Wang, Q. Yao, H. Bi, F. Huang, Q. Wang, L. Chen, J. Mater. Chem. A 3(13), 7086–7092 (2015)

    Article  Google Scholar 

  6. A. Soni, Z. Yanyuan, Y. Ligen, M.K. Aik, M.S. Dresselhaus, Q. Xiong, Nano Lett. 12(3), 1203–1209 (2012)

    Article  Google Scholar 

  7. V. Stavila, D.B. Robinson, M.A. Hekmaty, R. Nishimoto, D.L. Medlin, S. Zhu, T.M. Tritt, P.A. Sharma, ACS Appl. Mater. Interfaces 5(14), 6678–6686 (2013)

    Article  Google Scholar 

  8. M.R. Dirmyer, J. Martin, G.S. Nolas, A. Sen, J.V. Badding, Small 5, 933–937 (2009)

    Article  Google Scholar 

  9. M. He, F. Qiu, Z.Q. Lin, Energy Environ. Sci. 6(5), 1352–1361 (2013)

    Article  Google Scholar 

  10. Q. Yao, L.D. Chen, W.Q. Zhang, S.C. Liufu, X.H. Chen, ACS Nano 4(4), 2445–2451 (2010)

    Article  Google Scholar 

  11. F.X. Jiang, J.K. Xu, B.Y. Lu, Y. Xie, R.J. Huang, L.F. Li, Chin. Phys. Lett. 25(6), 2202–2205 (2008)

    Article  Google Scholar 

  12. Q.L. Jiang, Q.Q. Liu, H.J. Song, H. Shi, Y.Y. Yao, J.K. Xu, G. Zhang, B.Y. Lu, J. Mater. Sci.: Mater. Electron. 24(11), 4240–4246 (2013)

    Google Scholar 

  13. L.Y. Wang, F.X. Jiang, J.H. Xiong, J.K. Xu, W.Q. Zhou, C.C. Liu, H. Shi, Q.L. Jiang, Mater. Chem. Phys. 153, 285–290 (2015)

    Article  Google Scholar 

  14. O. Bubnova, X. Crispin, Energy Environ. Sci. 5(11), 9345–9362 (2012)

    Article  Google Scholar 

  15. N. Dubey, M. Leclerc, J. Polym. Sci. Part B: Polym. Phys. 49(7), 467–475 (2011)

    Article  Google Scholar 

  16. G.H. Kim, L. Shao, K. Zhang, K.P. Pipe, Nat. Mater. 12(8), 719–723 (2013)

    Article  Google Scholar 

  17. H.Y. Lv, H.J. Liu, J. Shi, X.F. Tang, C. Uher, J. Mater. Chem. A 1(23), 6831–6838 (2013)

    Article  Google Scholar 

  18. R.R. Yue, J.K. Xu, Synth. Met. 162(11–12), 912–917 (2012)

    Article  Google Scholar 

  19. Q.L. Jiang, C.C. Liu, J.K. Xu, B.Y. Lu, H.J. Song, H. Shi, Y.Y. Yao, L. Zhang, J. Polym. Sci. Part B: Polym. Phys. 52(11), 737–742 (2014)

    Article  Google Scholar 

  20. J.H. Xiong, F.X. Jiang, W.Q. Zhou, C.C. Liu, J.K. Xu, RSC Adv. 5(75), 60708–60712 (2015)

    Article  Google Scholar 

  21. J. Luo, D. Billep, T. Waechtler, T. Otto, M. Toader, O. Gordan, E. Sheremet, J. Martin, M. Hietschold, D.R.T. Zahn, T. Gessner, J. Mater. Chem. A 1(26), 7576–7583 (2013)

    Article  Google Scholar 

  22. B. Zhang, J. Sun, H.E. Katz, F. Fang, R.L. Opila, ACS Appl. Mater. Interfaces 2(11), 3170–3178 (2010)

    Article  Google Scholar 

  23. G.P. Moriarty, S. De, P.J. King, U. Khan, M. Via, J.A. King, J.N. Coleman, J.C. Grunlan, J. Polym. Sci. Part B: Polym. Phys. 51(2), 119–123 (2013)

    Article  Google Scholar 

  24. J.S. Son, M.K. Choi, M.K. Han, K. Park, J.Y. Kim, S.J. Lim, M. Oh, Y. Kuk, C. Park, S.J. Kim, T. Hyeon, Nano Lett. 12(2), 640–647 (2012)

    Article  Google Scholar 

  25. Y. Du, K.F. Cai, S. Chen, P. Cizek, T. Lin, ACS Appl. Mater. Interfaces 6(8), 5735–5743 (2014)

    Article  Google Scholar 

  26. B. Mayers, Y. Xia, J. Mater. Chem. 12(6), 1875–1881 (2002)

    Article  Google Scholar 

  27. M. He, J. Ge, Z. Lin, X. Feng, X. Wang, H. Lu, Y. Yang, F. Qiu, Energy Environ. Sci. 5(8), 8351–8358 (2012)

    Article  Google Scholar 

  28. M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, H. Weller, Adv. Funct. Mater. 19(21), 3476–3483 (2009)

    Article  Google Scholar 

  29. K.C. See, J.P. Feser, C.E. Chen, A. Majumdar, J.J. Urban, R.A. Segalman, Nano Lett. 10(11), 4664–4667 (2010)

    Article  Google Scholar 

  30. K. Chatterjee, M. Mitra, K. Kargupta, S. Ganguly, D. Banerjee, Nanotechnology 24(21), 215703 (2013)

    Article  Google Scholar 

  31. X. Guo, X. Jia, K. Jie, H. Sun, Y. Zhang, B. Sun, H. Ma, Chem. Phys. Lett. 568–569, 190–194 (2013)

    Article  Google Scholar 

  32. H.J. Song, C.C. Liu, H.F. Zhu, F.F. Kong, B.Y. Lu, J.K. Xu, J.M. Wang, F. Zhao, J. Electron. Mater. 42(6), 1268–1274 (2013)

    Article  Google Scholar 

  33. N.E. Coates, S.K. Yee, B. McCulloch, K.C. See, A. Majumdar, R.A. Segalman, J.J. Urban, Adv. Mater. 25(11), 1629–1633 (2013)

    Article  Google Scholar 

  34. D. Kim, Y. Kim, K. Choi, J.C. Grunlan, C. Yu, ACS Nano 4(1), 513–523 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the support from the National Science Foundation of China (51203070, 51402134 and 51463008), the Ganpo Outstanding Talents 555 projects, the Doctoral Starting up Foundation of Jiangxi Science and Technology Normal University and the School Fund of Jiangxi Science and Technology Normal University for postgraduate (YC2014-X09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingkun Xu or Fengxing Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, J., Wang, L., Xu, J. et al. Thermoelectric performance of PEDOT:PSS/Bi2Te3-nanowires: a comparison of hybrid types. J Mater Sci: Mater Electron 27, 1769–1776 (2016). https://doi.org/10.1007/s10854-015-3952-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3952-9

Keywords

Navigation