Skip to main content

Modelling Cortical and Thalamocortical Synaptic Loss and Compensation Mechanisms in Alzheimer’s Disease

  • Chapter
  • First Online:
Validating Neuro-Computational Models of Neurological and Psychiatric Disorders

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 14))

  • 841 Accesses

Abstract

Confirming that synaptic loss is directly related to cognitive deficit in Alzheimer’s disease (AD) has been the focus of many studies. Compensation mechanisms counteract synaptic loss and prevent the catastrophic amnesia induced by synaptic loss via maintaining the activity levels of neural circuits. In this chapter we investigate the interplay between various synaptic degeneration and compensation mechanisms, and abnormal cortical and thalamocortical oscillations based on two studies involving different implementations of a large-scale neural network model. Study 1 involves a large scale cortical model (C-model) and includes 100,000 neurons exhibiting several cortical firing patterns, 8.5 million synapses, short-term plasticity, axonal delays and receptor kinetics. The structure of the model is inspired by the anatomy of the cerebral cortex. Study 2 involves an extended model, a thalamocortical network model which oscillates within the alpha frequency band (8–13 Hz) as recorded in the wakeful relaxed state with closed eyes. The thalamocortical network model (TC-model) includes different types of cortical excitatory and inhibitory neurons recurrently connected to thalamic and reticular thalamic regions with the ratios and distances derived from the mammalian thalamocortical system.

The results of Study 1 suggest that cortical oscillations respond differently to compensation mechanisms. Local compensation preserves the baseline activity of theta (5–7 Hz) and alpha (8–12 Hz) oscillations whereas delta (1–4 Hz) and beta (13–30 Hz) oscillations are maintained via global compensation. Applying compensation mechanisms independently shows greater effects than combining both compensation mechanisms in one model and applying them in parallel. Consequently, it can be speculated that enhancing local compensation might recover the neural processes and cognitive functions that are associated with theta and alpha oscillations whereas inducing global compensation might contribute to the repair of neural (cognitive) processes which are associated with delta and beta band activity.

Study 2 focuses on investigating the impacts of four types of connectivity loss on the model’s spectral dynamics, namely degeneration of corticocortical, thalamocortical, corticothalamic and corticoreticular couplings, with an emphasis on the influence of each modelled case on the spectral output of the model. Synaptic compensation has been included in each model to examine the interplay between synaptic deletion and compensation mechanisms, and the oscillatory activity of the network. The results of power spectra and event related desynchronisation/synchronisation (ERD/S) analyses show that the dynamics of the thalamic and cortical oscillations are significantly influenced by corticocortical synaptic loss. Interestingly, the patterns of changes in thalamic spectral activity are correlated with those in the cortical model. Similarly, the thalamic oscillatory activity is diminished after partial corticothalamic denervation. Given the results, it can be speculated that thalamic atrophy is a secondary pathology to cortical shrinkage in Alzheimer’s disease. In addition, this study finds that the inhibition from neurons in the thalamic reticular nucleus (RTN) to thalamic relay (TCR) neurons plays a key role in regulating thalamic oscillations; disinhibition disrupts thalamic oscillatory activity even though TCR neurons are more depolarized after being released from RTN inhibition. Both study 1 and study 2 indicate that compensation mechanisms may vary across cortical regions and the activation of inappropriate compensation mechanism in a particular region may fail to recover network dynamics and/or induce secondary pathological changes in the network. Both studies provide a better understanding on the neural causes of abnormal oscillatory activity in neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The event in real EEG experiments corresponds to a motor task that lasts for a short time (few seconds). Such events stimulate certain populations of neurons and results in an attenuation or potentiation in the power of certain frequency bands. In this study, the event corresponds to a massive loss of synapses. By utilising the ERD/ERS measure, the study aims to examine the effects of synaptic loss and compensation on the oscillatory activity of the network. Synaptic compensation is implemented by increasing the weights of the remaining synapses. Synaptic weights and the intrinsic membrane properties of the neurons are responsible for the dynamics of the EEG signal (Pfurtscheller & Lopes da Silva 1999). This justifies the choice of utilising an ERD/ERS analysis in this study.

References

  1. Bhattacharya BS, Coyle D, Maguire L. A thalamo-cortico-thalamic neural mass model to study alpha rhythms in Alzheimer’s disease. Neural Netw. 2011;24:631–45 (Elsevier Ltd.).

    Article  PubMed  Google Scholar 

  2. Jeong J. EEG dynamics in patients with Alzheimer’s disease, Clinical Neurophysiol. 2004;115(7):1490–505.

    Article  Google Scholar 

  3. Lizio R, Vecchio F, Frisoni GB, Ferri R, Rodriguez G, Babiloni C. Electroencephalographic rhythms in Alzheimer’s disease. Int J Alzheimers Dis. 2011;2011:927573.

    PubMed Central  PubMed  Google Scholar 

  4. Mugantseva EA, Podolski IY. Animal model of Alzheimer’s disease: characteristics of EEG and memory. Cent Eur J Biol. 2009;4(4):507–14.

    CAS  Google Scholar 

  5. Besthorn C, Zerfass R, Geiger-Kabisch C, Sattel H, Daniel S, Schreiter-Gasser U, Förstl H. Discrimination of Alzheimer’s disease and normal aging by EEG data. Electroencephalogr Clin Neurophysiol. 1997;103:241–8.

    Article  CAS  PubMed  Google Scholar 

  6. Coben L, Danziger W, Berg L. Frequency analysis of the resting awake EEG in mild senile dementia of Alzheimer type. Electroencephalogr Clin Neurophysiol. 1983;55:372–80.

    Article  CAS  PubMed  Google Scholar 

  7. Coben L, Danziger W, Storandt M. A longitudinal EEG study of mild senile dementia of Alzheimer type: changes at 1 year and at 2.5 years, Electroencephalogr Clin Neurophysiol. 1985;61:101–12.

    Article  CAS  PubMed  Google Scholar 

  8. Hier DB, Mangone CA, Ganellen R, Warach JD, Van Egeren R, Perlik SJ, Gorelick PB. Quantitative measurement of delta activity in Alzheimer’s disease. Clini EEG. 1991;22:178–82.

    Article  CAS  Google Scholar 

  9. Dauwels J, Vialatte F, Musha T, Cichocki A. A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease based on EEG. NeuroImage. 2010;49(1):668–93 (Elsevier Inc.) http://www.ncbi.nlm.nih.gov/pubmed/19573607. Accessed 6 Feb 2013.

    Article  CAS  PubMed  Google Scholar 

  10. De Waal H, Stam CJ, de Haan W, van Straaten ECW, Scheltens P, van der Flier WM. Young Alzheimer patients show distinct regional changes of oscillatory brain dynamics. Neurobiol Aging. 2012;33(5):1008.e25–31.

    Article  PubMed  Google Scholar 

  11. Baker M, Akrofi K, Schiffer R, Boyle MWO. EEG patterns in mild cognitive impairment (mci) patients. Open Neuroimag J. 2008;2:52–5.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Van der Hiele K, Vein AA, Reijntjes RHAM, Westendorp RGJ, Bollen ELEM van Buchem MA, van Dijk JG, Middelkoop HAM. EEG correlates in the spectrum of cognitive decline. Clin Neurophysiol. 2007;118:1931–9.

    Article  PubMed  Google Scholar 

  13. Pucci E, Belardinelli N, Cacchiò G, Signorino M, Angeleri F. EEG power spectrum differences in early and late onset forms of Alzheimer’s disease. Clin Neurophysiol. 1999;110(4):621–31.

    Article  CAS  PubMed  Google Scholar 

  14. Dauwels J, Vialatte F-B, Cichocki A. On the early diagnosis of Alzheimer’s disease from EEG signals: a mini-review. In: Wang R, Gu F, editors. Advances in cognitive neurodynamics (II) SE—106. Netherlands: Springer; 2011. pp. 709–16.

    Chapter  Google Scholar 

  15. Jelles B, Scheltens P, van der Flier WM, Jonkman EJ, da Silva FHL, Stam CJ. Global dynamical analysis of the EEG in Alzheimer’s disease: frequency-specific changes of functional interactions. Clin Neurophysiol. 2008;119:837–41.

    Article  CAS  PubMed  Google Scholar 

  16. Jelic V, Johansson SE, Almkvist O, Shigeta M, Julin P, Nordberg A, Winblad B, Wahlund LO. Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer’s disease. Neurobiol Aging. 2000;21:533–40.

    Article  CAS  PubMed  Google Scholar 

  17. Pons AJ, Cantero JL, Atienza M, Garcia-Ojalvo J. Relating structural and functional anomalous connectivity in the aging brain via neural mass modeling. NeuroImage. 2010;52(3):848–61 (Elsevier Inc.). http://www.ncbi.nlm.nih.gov/pubmed/20056154. Accessed 29 Jan 2013.

    Article  CAS  PubMed  Google Scholar 

  18. Jones SR, Pinto DJ, Kaper TJ, Kopell N. Alpha-frequency rhythms desynchronize over long cortical distances: a modeling study. J Comput Neurosci. 2000;9(3):271–91.

    Article  CAS  PubMed  Google Scholar 

  19. De Waal H, Stam CJ, Blankenstein MA, Pijnenburg YAL, Scheltens P, van der Flier WM. EEG abnormalities in early and late onset Alzheimer’s disease: understanding heterogeneity. J Neurol Neurosurg Psychiatry. 2011;82(1):67–71.

    Article  PubMed  Google Scholar 

  20. Babilon C, Lizio R, Vecchio F, Frisoni GB, Pievani M, Geroldi C, Claudia F, Ferri R, Lanuzza B, Rossini PM. Reactivity of cortical alpha rhythms to eye opening in mild cognitive impairment and Alzheimer’s disease: an EEG study. J Alzheimers Dis. 2010;22(4):1047–64.

    Google Scholar 

  21. Koenig T, Prichep L, Dierks T, Hubl D, Wahlund LO, John ER, Jelic V. Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging. 2005;26:165–71.

    Article  CAS  PubMed  Google Scholar 

  22. Delbeuck X, Van der Linden M, Collette F. Alzheimer’s disease as a disconnection syndrome? Neuropsychol Rev. 2003;13:79–92.

    Article  CAS  PubMed  Google Scholar 

  23. De Haan W, Pijnenburg YAL, Strijers RLM, van der Made Y, van der Flier WM, Scheltens P, Stam CJ. Functional neural network analysis in frontotemporal dementia and Alzheimer’s disease using EEG and graph theory. BMC Neurosci. 2009;10:101. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2736175tool=pmcentrezrendertype=abstract. Accessed: 1 Feb 2013.

  24. Li X, Coyle D, Maguire L, Watson DR, McGinnity TM. Gray matter concentration and effective connectivity changes in Alzheimer’s disease: a longitudinal structural MRI study. Neuroradiology. 2011;53(10):733–48. http://www.ncbi.nlm.nih.gov/pubmed/21113707. Accessed: 31 Jan 2013.

    Article  PubMed  Google Scholar 

  25. Park Y-M, Che H-J, Im C-H, Jung H-T, Bae S-M, Lee S-H. Decreased EEG synchronization and its correlation with symptom severity in Alzheimer’s disease. Neurosci Res. 2008;62(2):112–7. http://www.ncbi.nlm.nih.gov/pubmed/18672010. Accessed: 6 Feb 2013.

    Article  PubMed  Google Scholar 

  26. Jones EG. Thalamic circuitry and thalamocortical synchrony. Philos Trans R Soc Lond B Biol Sci. 2002;357(1428):1659–73.

    Article  PubMed Central  PubMed  Google Scholar 

  27. De Jong LW, van der Hiele K, Veer IM, Houwing JJ, Westendorp RGJ, Bollen ELEM, de Bruin PW, Middelkoop HAM, van Buchem MA, van der Grond J. Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study. Brain. 2008;131(12):3277–85. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2639208tool=pmcentrezrendertype=abstract. Accessed 6 Feb 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Sherman SM. A wake-up call from the thalamus. Nature Neurosci. 2001;4:344–6.

    Article  CAS  PubMed  Google Scholar 

  29. Moretti DV, Babiloni C, Binetti G, Cassetta E, Dal Forno G, Ferreric F, Ferri R, Lanuzza B, Miniussi C, Nobili F, Rodriguez G, Salinari S, Rossini, PM. Individual analysis of EEG frequency and band power in mild Alzheimer’s disease. Clin Neurophysiol. 2004;115:299–308

    Article  PubMed  Google Scholar 

  30. Savioz A, Leuba G, Vallet PG, Walzer C. Contribution of neural networks to Alzheimer disease’s progression. Brain Res Bull. 2009;80(4–5):309–14. http://www.ncbi.nlm.nih.gov/pubmed/19539730. Accessed 6 Feb 2013.

    Article  CAS  PubMed  Google Scholar 

  31. Minati L, Edginton T, Bruzzone MG, Giaccone G. Current concepts in Alzheimer’s disease: a multidisciplinary review. Am J Alzheimers Dis Dement. 2009;24:95–121.

    Article  Google Scholar 

  32. Spires-Jones TL, Stoothoff WH, de Calignon A, Jones PB, Hyman BT. Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci. 2009;32:150–9.

    Article  CAS  PubMed  Google Scholar 

  33. Brion JP. Neurofibrillary tangles and Alzheimer’s disease. Eur Neurol. 1998;40:130–40.

    Article  CAS  PubMed  Google Scholar 

  34. Bear M, Connors B, Paradiso M, Bear MF, Connors BW, Paradiso MA. Neuroscience: exploring the brain. Philadelphia: Lippincott Williams & Wilkins; 2002.

    Google Scholar 

  35. Boche D, Nicoll JAR. Are we getting to grips with Alzheimer’s disease at last? Brain. 2010;133:1297–9.

    Article  PubMed  Google Scholar 

  36. Davies C, Mann D, Sumpter P, Yates P. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J Neurol Sci. 1987;78:151–64.

    Article  CAS  PubMed  Google Scholar 

  37. Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, Holtzman DM, Betsholtz C, Armulik A, Sallstrom J, Berk BC, Zlokovic BV. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature. 2012;485:512–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12(12):723–38 (Nature Publishing Group). http://www.ncbi.nlm.nih.gov/pubmed/22048062. Accessed 29 Jan 2013.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Carmeliet P, De Strooper B. Alzheimer’s disease: a breach in the blood-brain barrier. Nature. 2012;485:451–2.

    Article  CAS  PubMed  Google Scholar 

  40. Pimentel-Coelho PM, Rivest S. The early contribution of cerebrovascular factors to the pathogenesis of Alzheimer’s disease. Eur J Neurosci. 2012;35:1917–37.

    Article  PubMed  Google Scholar 

  41. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57:178–201.

    Article  CAS  PubMed  Google Scholar 

  42. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C. Pericytes regulate the blood-brain barrier. Nature. 2010;468:557–61.

    Article  CAS  PubMed  Google Scholar 

  43. Small DH. Mechanisms of synaptic homeostasis in Alzheimer’s disease. Curr Alzheimer Res. 2004;1:27–32.

    Article  CAS  PubMed  Google Scholar 

  44. Turrigiano G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol. 2012;4:a005736.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Turrigiano G. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annual Rev Neurosci. 2011;34:89–103.

    Article  CAS  Google Scholar 

  46. Uylings HBM, De Brabander JM. Neuronal changes in normal human aging and Alzheimer’s disease. Brain Cognit. 2002;49:268–76 (Elsevier).

    Article  Google Scholar 

  47. Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA. Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2004;101:343–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Leuba G, Savioz A, Vernay A, Carnal B, Kraftsik R, Tardif E, Riederer I, Riederer BM. Differential changes in synaptic proteins in the Alzheimer frontal cortex with marked increase in PSD-95 postsynaptic protein. J Alzheimer’s Dis. 2008;15:139–51.

    CAS  Google Scholar 

  49. Holtmaat A, Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci. 2009;10:647–58 (Nature Publishing Group).

    Article  CAS  PubMed  Google Scholar 

  50. Fröhlich F, Bazhenov M, Sejnowski TJ. Pathological effect of homeostatic synaptic scaling on network dynamics in diseases of the cortex. J Neurosci. 2008;28(7):1709–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-alpha. Nature. 2006;440:1054–9.

    Article  CAS  PubMed  Google Scholar 

  52. Auld DS, Robitaille R. Glial cells and neurotransmission: an inclusive view of synaptic function. Neuron. 2003;40(2):389–400.

    Article  CAS  PubMed  Google Scholar 

  53. Aguado F, Espinosa-Parrilla JF, Carmona MA, Soriano E. Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. J Neurosci. 2002;22(21):9430–44.

    CAS  PubMed  Google Scholar 

  54. Diamond JS. Deriving the glutamate clearance time course from transporter currents in CA1 hippocampal astrocytes: transmitter uptake gets faster during development. J Neurosci. 2005;25(11):2906–16.

    Article  CAS  PubMed  Google Scholar 

  55. Lin, S-C, Bergles, DE. Synaptic signaling between neurons and glia. Glia. 2004;47(3):290–8.

    Article  PubMed  Google Scholar 

  56. Wigley R, Hamilton N, Nishiyama A, Kirchhoff F, Butt AM. Morphological and physiological interactions of NG2-glia with astrocytes and neurons. J Anat. 2007;210(6):661–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Nedergaard M, Rodríguez JJ, Verkhratsky A. Glial calcium and diseases of the nervous system. Cell Calcium. 2010;47(2):140–9.

    Article  CAS  PubMed  Google Scholar 

  58. Vlachos A, Becker D, Jedlicka P, Winkels R, Roeper J, Deller T. Entorhinal denervation induces homeostatic synaptic scaling of excitatory postsynapses of dentate granule cells in mouse organotypic slice cultures. PloS ONE. 2012;7:e32883.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Topolnik L, Steriade M, Timofeev I. Partial cortical deafferentation promotes development of paroxysmal activity. Cereb Cortex. 2003;13(8):883–93.

    Article  PubMed  Google Scholar 

  60. Horn D, Ruppin E, Usher M, Herrmann M. Neural network modeling of memory deterioration in Alzheimer’s disease. Neural Comput. 1993;5:736–49 (Cambridge: MIT Press).

    Article  Google Scholar 

  61. Horn D, Levy N, Ruppin E. Neuronal-based synaptic compensation: a computational study in Alzheimer’s disease. Neural Comput. 1996;8:1227–43.

    Article  CAS  PubMed  Google Scholar 

  62. Rowan M. Effects of compensation, connectivity and tau in a computational model of Alzheimer’s disease. The 2011 International joint conference on neural networks, IEEE. San Jose. 2011. pp. 543–50.

    Google Scholar 

  63. Abuhassan K, Coyle D, Maguire LP. Investigating the neural correlates of pathological cortical networks in Alzheimer’s disease using heterogeneous neuronal models. IEEE Trans Biomed Eng. 2012;59:890–6.

    Article  PubMed  Google Scholar 

  64. Jensen O, Goel P, Kopell N, Pohja M, Hari R, Ermentrout B. On the human sensorimotor-cortex beta rhythm: sources and modeling. NeuroImage. 2005;26:347–55.

    Article  CAS  PubMed  Google Scholar 

  65. Izhikevich EM. Simple model of spiking neurons. IEEE Trans Neural Netw. 2003;14(6):1569–72. http://www.ncbi.nlm.nih.gov/pubmed/18244602. Accessed 20 Jan 2012.

    Article  CAS  PubMed  Google Scholar 

  66. Scheff SW. Reactive synaptogenesis in aging and Alzheimer’s disease: lessons learned in the Cotman laboratory. Neurochem Res. 2003;28:1625–30.

    Article  CAS  PubMed  Google Scholar 

  67. Scheff SW, DeKosky ST, Price DA. Quantitative assessment of cortical synaptic density in Alzheimer’s disease. Neurobiol Aging. 1990;11:29–37.

    Article  CAS  PubMed  Google Scholar 

  68. Izhikevich EM, Gally JA, Edelman GM. Spike-timing dynamics of neuronal groups. Cereb Cortex. 2004;14:933–44.

    Article  PubMed  Google Scholar 

  69. Rodriguez G, Arnaldi D, Picco A. Brain functional network in Alzheimer’s disease: diagnostic markers for diagnosis and monitoring. Int J Alzheimers Dis. 2011;2011:481903.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Izhikevich EM. Polychronization: computation with spikes. Neural Comput. 2006;18(2):245–82. http://www.ncbi.nlm.nih.gov/pubmed/16378515. Accessed 20 Jan 2012.

    Article  PubMed  Google Scholar 

  71. Braitenberg V, Schüz A. Cortex: statistics and geometry of neuronal connectivity. Berlin: Springer; 1998.

    Book  Google Scholar 

  72. Swadlow HA. Efferent neurons and suspected interneurons in motor cortex of the awake rabbit: axonal properties, sensory receptive fields, and subthreshold synaptic inputs. J Neurophysiol. 1994;71:437–53.

    CAS  PubMed  Google Scholar 

  73. Waxman SG, Bennett MV. Relative conduction velocities of small myelinated and non-myelinated fibres in the central nervous system. Nat New Biol. 1972;238:217–19.

    Article  CAS  PubMed  Google Scholar 

  74. Binzegger T, Douglas RJ, Martin KAC. A quantitative map of the circuit of cat primary visual cortex. J Neurosci. 2004;24(39):8441–53. http://www.ncbi.nlm.nih.gov/pubmed/15456817. Accessed 29 Jan 2013.

    Article  CAS  PubMed  Google Scholar 

  75. Izhikevich EM, Edelman GM. Large-scale model of mammalian thalamocortical systems. Proc Natl Acad Sci U S A. 2008;105(9):3593–8. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2265160tool=pmcentrezrendertype=abstract. Accessed 20 Jan 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Traub RD, Contreras D, Cunningham MO, Murray H, LeBeau FEN, Roopun A, Bibbig A, Wilent WB, Higley MJ, Whittington MA. Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol. 2005;93:2194–232.

    Article  PubMed  Google Scholar 

  77. Bazhenov M, Timofeev I, Steriade M, Sejnowski T. Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J Neurosci. 2002;22:8691–704.

    CAS  PubMed  Google Scholar 

  78. Landisman CE, Long MA, Beierlein M, Deans MR, Paul DL, Connors BW. Electrical synapses in the thalamic reticular nucleus. J Neurosci. 2002;22:1002–9.

    CAS  PubMed  Google Scholar 

  79. Benarroch EE. GABAB receptors: structure, functions, and clinical implications. Neurology. 2012;78(8):578–84.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang SJ, Huguenard JR, Prince DA. GABAA receptor-mediated Cl- currents in rat thalamic reticular and relay neurons. J Neurophysiol. 1997;78:2280–6.

    CAS  PubMed  Google Scholar 

  81. Sohal VS, Huntsman MM, Huguenard JR. Reciprocal inhibitory connections regulate the spatiotemporal properties of intrathalamic oscillations. J Neurosci. 2000;20:1735–45.

    CAS  PubMed  Google Scholar 

  82. Hughes SW, Crunelli V. Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist. 2005;11:357–72.

    Article  PubMed  Google Scholar 

  83. Jones EG. The thalamus. 1st edn. New York: Plenum Press; 1985.

    Book  Google Scholar 

  84. Castro-Alamancos MA, Calcagnotto ME. Presynaptic long-term potentiation in corticothalamic synapses. J Neurosci. 1999;19:9090–7.

    CAS  PubMed  Google Scholar 

  85. Kirkcaldie M. Neocortex. In: Watson C, Paxinos G, Puelles L, editors. The mouse nervous system. London: Academic Press; 2012. pp. 52–94.

    Chapter  Google Scholar 

  86. Agmon A, Connors BW. Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex. J Neurosci. 1992;12:319–29.

    CAS  PubMed  Google Scholar 

  87. Gentet LJ, Ulrich D. Electrophysiological characterization of synaptic connections between layer VI cortical cells and neurons of the nucleus reticularis thalami in juvenile rats. Eur J Neurosci. 2004;19:625–33.

    Article  PubMed  Google Scholar 

  88. Steriade M, Jones EG, Llinás RR. Thalamic oscillations and signaling. New York: Wiley; 1990.

    Google Scholar 

  89. Izhikevich EM. Dynamical systems in neuroscience: the geometry of excitability and bursting. In: Sejnowski TJ, Poggio TA, editors. Dynamical systems. Cambridge; The MIT Press; 2007 (25:441).

    Google Scholar 

  90. Markram H, Wang Y, Tsodyks M. Differential signaling via the same axon of neocortical pyramidal neurons. PNAS. 1998;95(9):5323–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Gupta A. Organizing principles for a diversity of gabaergic interneurons and synapses in the neocortex. Science. 2000;287:273–8.

    Article  CAS  PubMed  Google Scholar 

  92. Shankar GM, Walsh DM. Alzheimer’s disease: synaptic dysfunction and Abeta. Mol Neurodegen. 2009;4(1):48.

    Google Scholar 

  93. Yoshiyama Y, Higuchi M, Zhang B, Huang S-M, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM-Y. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53:337–51.

    Article  CAS  PubMed  Google Scholar 

  94. Yu W, Lu B. Synapses and dendritic spines as pathogenic targets in Alzheimer’s disease. Neural Plast. 2012;2012:24715 (Department of Pathology, Stanford University School of Medicine, Stanford CA).

    Google Scholar 

  95. Bertoni-Freddari C, Fattoretti P, Casoli T, Caselli U, Meier-Ruge W. Deterioration threshold of synaptic morphology in aging and senile dementia of Alzheimer’s type. Analayt Quant Cytol Histol. 1996;18:209–13.

    CAS  Google Scholar 

  96. Knobloch M, Mansuy IM. Dendritic spine loss and synaptic alterations in Alzheimer’s disease. Mol Neurobiol. 2008;37:73–82.

    Article  CAS  PubMed  Google Scholar 

  97. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991;30:572–80.

    Article  CAS  PubMed  Google Scholar 

  98. Penzes P, Cahill ME, Jones KA, VanLeeuwen J-E, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011;14:285–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Koffie RM, Hyman BT, Spires-Jones TL. 2011, Alzheimer’s disease: synapses gone cold. Mol Neurodegen. 2011;6:63.

    Article  Google Scholar 

  100. Sheffler-Collins SI, Dalva MB. EphBs: an integral link between synaptic function and synaptopathies. Trends Neurosci. 2012;35:293–304.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002;298:789–91.

    Article  CAS  PubMed  Google Scholar 

  102. Manshanden I, De Munck JC, Simon NR, Lopes da Silva FH. Source localization of MEG sleep spindles and the relation to sources of alpha band rhythms. Clin Neurophysiol. 2002;113(12):1937–47.

    Article  PubMed  Google Scholar 

  103. Steriade M, Nuñez A, Amzica F. Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neuroscience. 1993;13(8):3266–83.

    CAS  PubMed  Google Scholar 

  104. Yazawa S, Kawasaki S, Kanemaru A, Kuratsuwa Y, Yabuoshi R, Ohi T. Bilateral paramedian thalamo-midbrain infarction showing electroencephalographic alpha activity. Intern Med. 2001;40(5):443–8.

    Article  CAS  PubMed  Google Scholar 

  105. Timofeev I, Steriade M. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J Neurophysiol. 1996;76(6):4152–68.

    CAS  PubMed  Google Scholar 

  106. Paz JT, Christian CA, Parada I, Prince DA, Huguenard JR. Focal cortical infarcts alter intrinsic excitability and synaptic excitation in the reticular thalamic nucleus. J Neurosci. 2010;30:5465–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Koenig T, Lehmann D, Saito N, Kuginuki T, Kinoshita T, Koukkou M. Decreased functional connectivity of EEG theta-frequency activity Ève patients with schizophrenia†¯: preliminary results. NeuroReport. 2001a;50:55–60.

    CAS  Google Scholar 

  108. Koenig T, Lehmann D, Saito N, Kuginuki T, Kinoshita T, Koukkou M. Decreased functional connectivity of EEG theta-frequency activity in first-episode, neuroleptic-naive patients with schizophrenia: preliminary results. Schizophr Res. 2001b;50:55–60.

    Google Scholar 

  109. Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–7. http://www.ncbi.nlm.nih.gov/pubmed/10576479. Accessed 20 Jan 2012.

    Article  CAS  PubMed  Google Scholar 

  110. Bhattacharya BS, Coyle D, Maguire LP. Assessing alpha band event-related synchronisation/desynchronisation using a bio-inspired computational model. J Univ Comp Sci. 2012;18(13):1888–904.

    Google Scholar 

  111. Durka PJ, Zygierewicz J, Klekowicz H, Ginter J, Blinowska KJ. On the statistical significance of event-related EEG desynchronization and synchronization in the time-frequency plane. IEEE Trans Biomed Eng. 2004b;51(7):1167–75.

    Article  PubMed  Google Scholar 

  112. Pfurtscheller G, Aranibar A. Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr Clin Neurophysiol. 1977;42(6):817–26.

    Article  CAS  PubMed  Google Scholar 

  113. Prasad G, Herman P, Coyle D, McDonough S, Crosbie J. Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study. J Neuroeng Rehabil. 2010;7(1):60 (BioMed Central Ltd.). http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3017056tool=pmcentrezrendertype=abstract. Accessed 25 Oct 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  114. Coyle D, Prasad G, McGinnity TM. A time-frequency approach to feature extraction for a brain-computer interface with a comparative analysis of performance measures. EURASIP J Adv Signal Process. 2005;2005(19):3141–51. http://asp.eurasipjournals.com/content/2005/19/861614. Accessed 20 Jan 2012.

    Article  Google Scholar 

  115. Herman P, Prasad G, McGinnity TM, Coyle D. Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification. IEEE Trans Neural Syst Rehabil Eng. 2008;16(4):317–26. http://www.ncbi.nlm.nih.gov/pubmed/18701380. Accessed 20 Jan 2012.

    Article  PubMed  Google Scholar 

  116. Durka PJ, Zygierewicz J, Klekowicz H, Ginter J, Blinowska KJ. On the statistical significance of event-related EEG desynchronization and synchronization in the time-frequency plane. IEEE Trans. Biomed. Eng. 2004b;51:1167–75. 10.1109/TBME.2004.827341.

    Google Scholar 

  117. Timofeev I, Grenier F, Bazhenov M, Senjnowski T, Steriade M. Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex. 2000;10:1185–99.

    Article  CAS  PubMed  Google Scholar 

  118. Latham PE, Richmond BJ, Nelson PG, Nirenberg S. Intrinsic dynamics in neuronal networks. I. Theory. J Neurophysiol. 2000;83:808–27.

    CAS  PubMed  Google Scholar 

  119. Latham PE, Richmond BJ, Nirenberg S, Nelson PG. Intrinsic dynamics in neuronal networks. II. Experiment. J Neurophysiol. 2000;83:828–35.

    CAS  PubMed  Google Scholar 

  120. Prichep LS, John ER, Ferris SH, Rausch L, Fang Z, Cancro R, Torossian C, Reisberg B. Prediction of longitudinal cognitive decline in normal elderly with subjective complaints using electrophysiological imaging. Neurobiol Aging. 2006;27:471–81.

    Article  CAS  PubMed  Google Scholar 

  121. Nuwer MR, Comi G, Emerson R, Fuglsang-Frederiksen A, Guérit JM, Hinrichs H, Ikeda A, Luccas FJ, Rappelsberger P. IFCN standards for digital recording of clinical EEG. International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol. 1999;52:11–4.

    CAS  Google Scholar 

  122. Contreras D, Destexhe A, Sejnowski TJ, Steriade M. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science. 1996;274(5288):771–4.

    Article  CAS  PubMed  Google Scholar 

  123. Destexhe A. Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex. J Physiol. 2000;94(5–6):391–410.

    CAS  Google Scholar 

  124. Mayer J, Schuster HG, Claussen JC, Mölle M. Corticothalamic projections control synchronization in locally coupled bistable thalamic oscillators. Phys Rev Lett. 2007;99(6):068102.

    Article  PubMed  CAS  Google Scholar 

  125. Arendt T. Alzheimer’s disease as a disorder of mechanisms underlying structural brain self-organization. Neuroscience. 2001;102:723–65.

    Article  CAS  PubMed  Google Scholar 

  126. Scheff SW, Price DA. Synapse loss in the temporal lobe in Alzheimer’s disease. Annals of Neurology. 1993;33:190–9.

    Article  CAS  PubMed  Google Scholar 

  127. Kirov SA, Goddard CA, Harris KM. Age-dependence in the homeostatic upregulation of hippocampal dendritic spine number during blocked synaptic transmission. Neuropharmacol. 2004;47:640–8.

    Article  CAS  Google Scholar 

  128. Cantero JL, Atienza M, Gomez-Herrero G, Cruz-Vadell A, Gil-Neciga E, Rodriguez-Romero R, Garcia-Solis D. Functional integrity of thalamocortical circuits differentiates normal aging from mild cognitive impairment. Human Brain Map. 2009;30(12):3944–57. http://www.ncbi.nlm.nih.gov/pubmed/19449329. Accessed 6 Feb 2013.

    Article  Google Scholar 

  129. Moretti DV, Pievani M, Fracassi C, Geroldi C, Calabria M, De Carli CS, Rossini PM Frisoni GB. Brain vascular damage of cholinergic pathways and EEG markers in mild cognitive impairment. J Alzheimers Dis. 2008;15:357–72.

    CAS  PubMed  Google Scholar 

  130. Hasselmo M. Runaway synaptic modification in models of cortex: Implications for Alzheimer’s disease. Neural Netw. 1994;7:13–40.

    Article  Google Scholar 

  131. Tchantchou F, Lacor PN, Cao Z, Lao L, Hou Y, Cui C, Klein WL, Luo Y. Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. J Alzheimers Dis. 2009;18(4):787–98.

    CAS  PubMed  Google Scholar 

  132. Dok-Go H, Lee KH, Kim HJ, Lee EH, Lee J, Song YS, Lee Y-H, Jin C, Lee YS, Cho J. Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficus-indica var. saboten. Brain Res. 2003;965:130–6.

    Article  CAS  PubMed  Google Scholar 

  133. Shi C, Zheng D, Wu F, Liu, J Xu, J. The phosphatidyl inositol 3 kinase-glycogen synthase kinase 3β pathway mediates bilobalide-induced reduction in amyloid β-peptide. Neurochem Res. 2012;37:298–306.

    Article  CAS  PubMed  Google Scholar 

  134. Abuhassan K, Coyle D, Belatreche A, Maguire L. Compensating for synaptic loss in Alzheimer’s disease. J Comput Neurosci. 2014;36(1):19–37. doi:10.1007/s10827–013–0462–8.

    Article  PubMed  Google Scholar 

  135. Johnson MD, Ojemann GA. The role of the human thalamus in language and memory: evidence from electrophysiological studies. Brain Cognit. 2000;42(2):218–30.

    Article  CAS  Google Scholar 

  136. Van der Werf YD, Scheltens P, Lindeboom J, Witter MP, Uylings HBM, Jolles J. Deficits of memory, executive functioning and attention following infarction in the thalamus; a study of 22 cases with localised lesions. Neuropsychologia. 2003;41(10):1330–44.

    Article  PubMed  Google Scholar 

  137. Zhao X, Liu Y, Wang X, Liu B, Xi Q, Guo Q, Jiang H, Jiang T, Wang P. Disrupted small-world brain networks in moderate Alzheimer’s disease: a resting-state FMRI study. PloS ONE. 2012:7(3):e33540. doi:10.1371/journal.pone.0033540.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Abuhassan K, Coyle D, Maguire L. Compensating for thalamocortical synaptic loss in Alzheimer’s disease. Front Comp Neurosci. 2014;8:65. doi:10.3389/fncom.2014.00065

    Google Scholar 

  139. Qi Z, Wu X, Wang Z, Zhang N, Dong H, Yao L, Li K. Impairment and compensation coexist in amnestic MCI default mode network. NeuroImage. 2010;50:48–55.

    Article  PubMed  Google Scholar 

  140. Wang Z, Jia X, Liang P, Qi Z, Yang Y, Zhou W, Li K. Changes in thalamus connectivity in mild cognitive impairment: evidence from resting state fMRI. Eur J Radiol. 2012;81:277–85.

    Article  PubMed  Google Scholar 

  141. Supekar K, Menon V, Rubin D, Musen M, Greicius MD. Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol. 2008:4. doi:10.1371/journal.pcbi.1000100.

    Google Scholar 

  142. Woolfolk A. Educational psychology. 11th edn. Bacon: Pearson/Allyn; 2011

    Google Scholar 

  143. Pedro T, Weiler M, Yasuda CL, D’Abreu A, Damasceno BP, Cendes F, Balthazar MLF. Volumetric brain changes in thalamus, corpus callosum and medial temporal structures: mild Alzheimer’s disease compared with amnestic mild cognitive impairment. Dement Geriat Cognit Disord. 2012;34(3–4):149–55.

    Article  Google Scholar 

  144. Zarei M, Patenaude B, Damoiseaux J, Morgese C, Smith S, Matthews PM, Barkhof F, Rombouts SARB, Sanz-Arigita E, Jenkinson M. Combining shape and connectivity analysis: an MRI study of thalamic degeneration in Alzheimer’s disease. NeuroImage. 2010;49(1):1–8.

    Article  PubMed  Google Scholar 

  145. Ryan NS, Keihaninejad S, Shakespeare TJ, Lehmann M, Crutch SJ, Malone IB, Thornton JS, Mancini L, Hyare H, Yousry T, Ridgway GR, Zhang H, Modat M, Alexander DC, Rossor MN, Ourselin S, Fox NC. Magnetic resonance imaging evidence for presymptomatic change in thalamus and caudate in familial Alzheimer’s disease. Brain. 2013. doi:10.1093/brain/awt065.

    Google Scholar 

  146. O’Dwyer L, Lamberton F, Matura S, Tanner C, Scheibe M, Miller J, Rujescu D, Prvulovic D, Hampel H. Reduced hippocampal volume in healthy young ApoE4 carriers: an MRI study. PloS ONE. 2012;7(11). doi:10.1371/journal.pone.0048895.

    Google Scholar 

  147. Cho H, Seo SW, Kim J-H, Kim C, Ye BS, Kim GH, Noh Y, Kim HJ, Yoon CW, Seong J-K, Kim C-H, Kang SJ, Chin J, Kim ST, Lee K-H, Na DL. Changes in subcortical structures in early- versus late-onset Alzheimer’s disease. Neurobiol Aging. 2013;34(7):1740–7.

    Article  PubMed  Google Scholar 

  148. Zikopoulos B, Barbas H. Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. J Neurosci. 2006;26(28):7348–61.

    Article  CAS  PubMed  Google Scholar 

  149. Steriade M. Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci. 2005;28(6):317–24.

    Article  CAS  Google Scholar 

  150. Zou X, Coyle D, Wong-Lin K, Maguire L. Beta-amyloid induced changes in A-type K+current can alter hippocampo-septal network dynamics. J Comput Neurosci. 2012;32(3):465–77. http://www.ncbi.nlm.nih.gov/pubmed/21938438. Accessed 4 Jul 2013.

    Article  PubMed  Google Scholar 

  151. Zou X, Coyle D, Wong-lin K, Maguire L n.d. Computational study of hippocampal-septal theta rhythm changes due to beta-amyloid-altered ionic channels. PLoS ONE. 2011;6(6):e21579.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Menschik ED Finkel LH. Neuromodulatory control of hippocampal function: towards a model of Alzheimer’s disease. Art Intell Med. 1998;13:99–121.

    Article  CAS  Google Scholar 

  153. Pons AJ, Cantero JL, Atienza M, García-Ojalvo J. Modeling synchronization loss in large-scale brain dynamics. Proceedings of the 18th international Conference On Artificial Neural Networks, Part II. : Springer; 2008. pp. 675–84

    Google Scholar 

  154. De Haan W, Mott K, van Straaten ECW, Scheltens P, Stam CJ. Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease. PLoS Comput Biol. 2012;8(8):e1002582. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3420961tool=pmcentrezrendertype=abstract. Accessed 1 Feb 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Sen Bhattacharya B, Cakir Y, Serap-Sengor N, Maguire L, Coyle D. Model-based bifurcation and power spectral analyses of thalamocortical alpha rhythm slowing in Alzheimer’s disease. Neurocomput. 2013;115:11–22. http://linkinghub.elsevier.com/retrieve/pii/S0925231212008600. Accessed 29 May 2013.

    Article  Google Scholar 

  156. Dauwels J, Vialatte F, Cichocki A. Diagnosis of Alzheimer’s disease from EEG signals: where are we standing? Curr Alzheimer Res. 2010;7:487–505.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work is supported by the Northern Ireland Department for Education and Learning under the Strengthening the All Island Research Base Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Coyle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Coyle, D., Abuhassan, K., Maguire, L. (2015). Modelling Cortical and Thalamocortical Synaptic Loss and Compensation Mechanisms in Alzheimer’s Disease. In: Bhattacharya, B., Chowdhury, F. (eds) Validating Neuro-Computational Models of Neurological and Psychiatric Disorders. Springer Series in Computational Neuroscience, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-20037-8_9

Download citation

Publish with us

Policies and ethics