Skip to main content

Aerogel Processing

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

One of the problems largely commented in the sol–gel science is how to make large bodies, because gels tend to crack during drying. The drying stresses are attributed to capillary phenomena and differential strain which result from a pressure gradient in the pore liquid. By the supercritical drying (SCD), the capillary stresses are eliminated and monolithic aerogel can be obtained. This chapter focuses on silica aerogel, the most studied aerogel. It presents an overview of the supercritical drying techniques, but also some of the remarkable aerogel properties (optical, mechanical, thermal and acoustical, etc.) with respect to its peculiar microstructure.

The chapter briefly presents other kinds of aerogels (oxides and chalcogenide aerogels, composite aerogels, organic aerogels, etc.) and a panel of potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aegerter AM, Leventis N, Koebel MM. Aerogels handbook. New York: Springer; 2011.

    Book  Google Scholar 

  • Anez L, Calas-Etienne S, Primera J, Woignier T. Gas and liquid permeability in nano composites gels: comparison of Knudsen and Klinkenberg correction factors. Microporous Mesoporous Mater. 2014;200:79–85.

    Article  Google Scholar 

  • Aravind PR, Sithara L, Mukundan P, Krishna PP, Warrier KGK. Silica alcogels for possible nuclear wastes confinement- a simulated study. J Mater Sci Lett. 2007;61:2398–401.

    Article  Google Scholar 

  • Aravind PR, Shajesh P, Mukundan P, Krishna PP, Warrier KGK. Non- supercritically dried silica- silica composites aerogel and its possible application for confining nuclear wastes. J Sol-Gel Sci Technol. 2008;46:146–51.

    Article  Google Scholar 

  • Bag S, Trikalitis PN, Chupas PJ, et al. Porous semiconducting gels and aerogels from xhalcogenide clusters. Science. 2007;317:490–3.

    Article  Google Scholar 

  • Baker LCW, Anderson TF. Some phase relationships in the three-component liquid system. J Am Chem Soc. 1957;79(2):2071–4.

    Article  Google Scholar 

  • Bali S, Huggins FE, Huffman GP, Ernst RD, Pugmire RJ, Eyring EM. Iron aerogels and xerogels catalysts for fischer-Tropsch synthesis of diesel fuel. Energy Fuel. 2009;23:14–8.

    Article  Google Scholar 

  • Barral K. Low density organic aerogels by double-catalysed synthesis. J Non-Cryst Solids. 1998;225:46–50.

    Article  Google Scholar 

  • Basso B, De Martin L, Ebert C, Gardoss C, Tomat T, Casarci M, Li RO. A novel support for enzyme adsorption: properties and applications of aerogels in low water media. Tetrahedron Lett. 2000;41:8627–30.

    Article  Google Scholar 

  • Bheekhun N., Abu Talib A.R. Hassan M.R.. Aerogels in aerospace: an overview. Adv Mater Sci Eng. 2013; 2013: 406065, 18 pages. 10.1155/2013/406065.

    Google Scholar 

  • Biesmans G, Randall D, Français E, Perrut M. Polyurethane-based organic aerogels’thermal performance. J Non-Cryst Solids. 1998a;225:36–40.

    Article  Google Scholar 

  • Biesmans G, Mertens A, Duffours L, Woignier T, Phalippou J. Polyurethane based organic aerogels and their transformation into carbon aerogels. J Non-Cryst Solids. 1998b;225:64–8.

    Article  Google Scholar 

  • Boonstra AH, Mulder CAM. effect of hydrolytic polycondensation of tetraethoxysilane on specific surface area of SiO2 gels. J Non-Cryst Solids. 1988;105:201–6.

    Article  Google Scholar 

  • Brinker, Scherer, Sol-gel science New York :Academic (1990).

    Google Scholar 

  • Brock SL, Yu H. Chalcogenide aerogels, Chap. 17. In: Aegerter MA, Leventis N, Koebel MM, editors. Aerogels handbook. New York: Springer Science; 2011. p. 367–84.

    Chapter  Google Scholar 

  • Cabidoche YM, Achard R, Cattan P, Clermont-Dauphin C, Massat F, Sansoulet J. Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: a simple leaching model accounts for current residue. J Environ Pollut. 2009;157:1697–705.

    Article  Google Scholar 

  • Chang X, Chen D, Jiao X. Chitosan-based aerogels with high adsorption performance. J Phys Chem B. 2008;112:7721–5.

    Article  Google Scholar 

  • Chen L, Zhu J, Liu YM, Cao Y, Li HX, He H, Dai W, Fan K. Photocatalytic activity of epoxide sol–gel derived titania transformed into nanocrystalline aerogel powders by supercritical drying. J Mol Catal A Chem. 2006;255:260–8.

    Article  Google Scholar 

  • Chevallier T, Woignier T, Toucet J, Blanchart E. Carbon sequestration in the fractal porosity of Andosols. Geoderma. 2010;159:182–8.

    Article  Google Scholar 

  • Degn EE, Engell J. Freeze drying of silica gels prepared from silicium methoxide. Rev Phys Appl. 1989;C4–24:23–8.

    Google Scholar 

  • Einarsrud MA. Light gels by conventional drying. J Non-Cryst Solids. 1998;225:1–7.

    Article  Google Scholar 

  • El Rassy H, Maury S, Buisson P, Pierre AC. Hydrophobic silica aerogel-lipase biocatalysts – Possible interactions between the enzyme and the gel. J Non-Cryst Solids. 2004;350:23–30.

    Google Scholar 

  • Esquivias L, Zarzycki J. Sonogels : an alternative method in sol-gel processing. In: Mackenzie JD, Ulrich DR, editors. Ultrastructure processing of advanced ceramics. New York: Wiley; 1988. p. 255–70.

    Google Scholar 

  • Esquivias L, Pinero M, Morales-Florez V, Dela Rosa Fox N. Aerogels synthesis by sonocatalysis :sonogels, Chap. 20. In: Aegerter MA, Leventis N, Koebel MM, editors. Aerogels handbook. Springer Science; 2011. p. 419–48.

    Google Scholar 

  • Fehr C, Diuedonné P, Primera J, Woignier T, Sauvajol JL, Anglaret E. Solid state polymorphism of liquid crystals in confined geometries. Eur Phys J E. 2003;12:13–66.

    Article  Google Scholar 

  • Forest L, Gibiat V, Woignier T. Biot’s Theory of acoustic propagation in porous media applied to aerogels and alcogels. J Non-Cryst Solids. 1998;225:477–48.

    Article  Google Scholar 

  • Forest L, Gibiat V, Hooley A. Impedance matching and acoustic absorption in granular layers of silica aerogels. J Non-Cryst Solids. 2001;285:230–5.

    Article  Google Scholar 

  • Francis AW. Ternary systems of liquid carbon dioxide. J Phys Chem. 1954;58:1099–114.

    Article  Google Scholar 

  • Gash AE, Tillotson TM, Satcher Jr JH, Hrubesh LW, Simpson RL. New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J Non-Cryst Solids. 2001;285:22–8.

    Article  Google Scholar 

  • Gross J, Fricke J. Ultrasonic velocity measurement in silica, carbon and inorganic aerogels. J Non-Cryst Solids. 1992;145:217–22.

    Article  Google Scholar 

  • Gross J, Coronado PR, Hrubesh LW. Elastic properties of silica aerogels from a new rapid supercritical extraction process. J Non-Cryst Solids. 1998;225:282–6.

    Article  Google Scholar 

  • Hench LL. Use of drying control chemical addition (DCCAs) in controlling sol-gel processing. In: Hench LL, Ulrich DR, editors. Science of ceramic chemical processing. New York: Wiley; 1986. p. 52–64.

    Google Scholar 

  • Hrubesh LW. Aerogel applications. J Non-Cryst Solids. 1998;225:335–42.

    Article  Google Scholar 

  • Jones SM. Aerogels: space explorations applications. J. Sol-Gel Sci Tech. 2006;40:351–7.

    Article  Google Scholar 

  • Kim KK, Jang KY. Hollow silica spheres of controlled size and porosity by sol-gel processing. J Am Ceram Soc. 1991;74:1987–92.

    Article  Google Scholar 

  • Kistler SS. Coherent expanded aerogels. J Phys Chem. 1932;34:52–64.

    Google Scholar 

  • Kocon L, Despetis F, Phalippou J. Ultralow density silica aerogels by alcohol supercritical drying. J Non-Cryst Solids. 1998;225:96–100.

    Article  Google Scholar 

  • Kucheyev SO, van Buuren T, Baumann TF, Satcher JH, Willey TM, Meulenberg RW, Felter TE, Poco JF, Gammon SA, Terminello LJ. Electronic structure of titania aerogels from soft x-ray absorption spectroscopy. Phys Rev B. 2004;69(24):245102. doi:10.1103/PhysRevB.69.245102.

    Article  Google Scholar 

  • Labat L., Durin C., Remaury S., Mandeville J.C., Rejsek-Riba V., Duzellier S., Duffours L., Colombel P., Woignier T.2013), CNES experiments on MEDET Astrophysics and space science proceedings 32 Masahito Tagawa, Jacob Kleinman,Yugo Kimoto Springer Heidelberg/New York/Toronto/London, 978-3 642-30228-2, 217–234

    Google Scholar 

  • Land VD, Harris TM, Teeters DC. Processing of low density silica gels by critical point drying or ambient pressure drying. J Non-Cryst Solids. 2001;283:11–7.

    Article  Google Scholar 

  • Land VD, Harris TM, Henshaw JM. Effect of gel modulus on the porosity of low-density silica. J Non-Cryst Solids. 2003;316:238–45.

    Article  Google Scholar 

  • Lee J. K., Gould G.L. Aerogel powder therapeutic agents. US Patent 6994842. 2006.

    Google Scholar 

  • Lee JK, Gould GL. Polyurea based aerogel for a high performance thermal insulation material. J. Sol-Gel Sci. and Tech. 2009;49:209–20.

    Article  Google Scholar 

  • Leventis N, Elder IA, Rolison DR, Anderson ML, Merzbacher CI. Durable modification of silica aerogel monoliths with fluorescent 2,7-diazapyrenium moieties. Sensing oxygen near the speed of open-air diffusion. Chem Mater. 1999;11:2837–45.

    Article  Google Scholar 

  • Leventis N, Sotitiou-Leventis C, Zhang G, Rawashdeh A-MM. Nanoengineering strong silica aerogels. Nano Lett. 2000;2(9):957–60.

    Article  Google Scholar 

  • Loy DA, Russick EM, Yamanaka SA, Baugher BM, Shea KJ. Direct formation of aerogels by sol-gel polymerization of alkoxysilanes in supercritical carbon dioxide. Chem Mater. 1997;9:2264–8.

    Article  Google Scholar 

  • Marlière C, Woignier T, Dieudonné P, Primera J, Lamy M, Phalippou J. Two fractal structure in aerogel. J Non-Cryst Solids. 2001;285:175–81.

    Article  Google Scholar 

  • Martin J, Hostika B, Lattimer C, Norris PM. Mechanical and acoustical properties as a function of PEG concentration in macroporous silica gels. J Non-Cryst Solids. 2001;285:222–9.

    Article  Google Scholar 

  • Mezza P, Phalippou J, Sempere R. Sol-gel derived porous silica films. J Non-Cryst Solids. 1999;243:75.

    Article  Google Scholar 

  • Mizuno T, Nagata H, Manabe S. Attempts to avoid cracks during drying. J Non-Cryst Solids. 1988;100:236–40.

    Article  Google Scholar 

  • Mo C.M., Li Y.H., Liu Y.S.,Zhang Y., Zhang L.D, Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aerogels, J Appl Phys 1998; 83: 4389–4391

    Google Scholar 

  • Mohanan JL, Arachchige IU, Brock SL. Porous semiconductor chalcogenide aerogels. Science. 2005;307:397–400.

    Google Scholar 

  • Mulder CAM, Van Lierop JG. Preparation, densification and characterization of autoclave dried SiO2 gels. In: Fricke J, editor. Aerogels, springer proceedings in physics. 6 Heidelberg: Springer; 1986. p. 68–75.

    Google Scholar 

  • Pajonk GM. Drying methods preserving the textural properties of gels. Rev Phys Appl. 1989;C4–24:13–22.

    Google Scholar 

  • Pajonk GM, El Tanany A. Isomerization and hydrogenation of butane-1 on a zirconia aerogel catalyst. React Kinet Catal Lett. 1992;47:167–75.

    Article  Google Scholar 

  • Panagiotopoulos AZ, Reid RC. High pressure phase in ternary fluid mixtures with a supercritical component. Am Chem Soc Div Fuel Chemi. 1985;30(3):46–56.

    Google Scholar 

  • Pauthe M, Quinson JF, Hdach H, Woignier T, Phalippou J, Scherer GW. Autoclave treatment effect on silica alcogel texture. J Non-Cryst Solids. 1991;130:1–7.

    Article  Google Scholar 

  • Pekala RW, Kong FM. A synthetic route to organic aerogels. Mechanism, structure and properties. Rev Phys Appl. 1989;C4(4):33–40.

    Google Scholar 

  • Pekala RW, Alviso CT, Kong FM, Hulsey SS. Aerogels derived from multifunctional organic monomers. J Non-Cryst Solids. 1992;145:90–8.

    Article  Google Scholar 

  • Perin L, Faivre AL, Calas-Etienne S, Woignier T. Nanostructural damage associated with isostatic compression of silica aerogels. J Non-Cryst Solids. 2004;333:68–73.

    Article  Google Scholar 

  • Phalippou J, Woignier T, Prassas M. Glasses from aerogels. Part I : the synthesis of monolithic aerogels. J Mater Sci. 1990;25:3111–7.

    Article  Google Scholar 

  • Pierre AC, Rigacci A. SiO2 aerogels, Chap 2. In: Aegerter MA, Leventis N, Koebel MM, editors. Aerogels handbook. New York: Springer Science; 2011. p. 21–46.

    Google Scholar 

  • Pietron JJ, Rolisson DR. Improving the efficiency of titania aerogel-based photovoltaic electrodes by electrochemically grafting isopropyl moieties on the titania surface. J Non-Cryst Solids. 2004;350:107–12.

    Article  Google Scholar 

  • Power M, Hosticka B, Black E, Daitch C, Norris P. Aerogels as biosensors: viral particle detection by bacteria immobilized on large pore aerogel. J Non-Cryst Solids. 2001;285:303–8.

    Article  Google Scholar 

  • Prakash SS, Brinker CJ, Hurd AJ. Silica aerogels films at ambient temperature. J Non-Cryst Solids. 1995;190:264–75.

    Article  Google Scholar 

  • Prassas M, Phalippou J, Zarzycki J. Synthesis of monolithic silica gels by hypercritical solvent evacuation. J Mater Sci. 1984;19:1656–65.

    Article  Google Scholar 

  • Reynes J, Woignier T, Phalippou J. Permeability measurements in composites aerogels: application to nuclear waste storage. J Non-Cryst Solids. 2001;85:323–7.

    Article  Google Scholar 

  • Rogacki G, Wawrzyniak P. Diffusion of ethanol-liquid CO2 in silica aerogel. J Non-Cryst Solids. 1995;186:73–7.

    Article  Google Scholar 

  • Santos A, Ajbary M, Kherbeche A, Pinero M, De la Rosa-Fox N, Esquivias L. Fast CO2 sequestration by aerogel composites. J Sol-Gel Sci Technol. 2008;45:291–7.

    Article  Google Scholar 

  • Scherer GW. Stress development during supercritical drying. J Non-Cryst Solids. 1992;145:33–40.

    Article  Google Scholar 

  • Scherer GW. Freezing gels. J Non-Cryst Solids. 1993;155:1–25.

    Article  Google Scholar 

  • Scherer GW. Stress in aerogel during depressurization of autoclave : I. Theory. J Sol-Gel Sci Tech. 1994;3:127–39.

    Article  Google Scholar 

  • Schwertfeger F, Frank D, Schmidt M. Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J Non-Cryst Solids. 1998;225:24–9.

    Article  Google Scholar 

  • Sermon PA, Self VA, Sun Y. Doped zirconia aerogels: catalyst and controlled structures and properties. J. Sol-Gel Sci. and Tech. 1997;8:851–6.

    Google Scholar 

  • Shoup RD. Complex fused silica shapes by a silicate gelation process. In: Mackenzie JD, Ulrich DR, editors. Ultrastructure processing of advanced ceramics. New York: Wiley; 1988. p. 347–54.

    Google Scholar 

  • Smirnova I, Mamic J, Arlt W. Adsorption of drugs on silica aerogels. Langmuir. 2003;19:8521–5.

    Article  Google Scholar 

  • Smirnova I, Suttiruengwong S, Seiler M, Arlt W. Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Pharm Dev Technol. 2004;9:443–52.

    Article  Google Scholar 

  • Stumpf C, Gässler KV, Reichenauer G, Fricke J. Dynamic gas flow measurements on aerogels. J Non-Cryst Solids. 1992;145:180–4.

    Article  Google Scholar 

  • Suh DJ, Park T, Kim W, Hong I. Synthesis of high surface area ruthenium oxide aerogels by non alkoxide sol –gel route. J Power Sources. 2003;117:186–91.

    Article  Google Scholar 

  • Szaniawska K, Murawski L, Pastuszac R, Walewski M, Fantozzi G. Nitridation and densification of SiO2 aerogels. J Non-Cryst Solids. 2001;286:58–63.

    Article  Google Scholar 

  • Tillotson TM, Hrubesh LW. Transparent ultralow density silica aerogels proposed by a two-step process. J Non-Cryst Solids. 1992;145:44–50.

    Article  Google Scholar 

  • Toki M, Miyashita S, Takeuchi T, Kande S, Kochi A. A large-size silica glass produced by a new sol-gel process. J Non-Cryst Solids. 1988;100:479–82.

    Article  Google Scholar 

  • Toledo-Fernandez JA, Mendoza-Serna R, Morales V, De la Rosa-Fox N, Pinero M, Santos A, Esquivias L. Bioactivity of wollastonite/aerogels composites obtained from a TEOS–MTES matrix. J Mater Sci Mater Med. 2008;19:2207–13.

    Article  Google Scholar 

  • Tsou P. Silica aerogel captures cosmic dust intact. J Non-Cryst Solids. 1995;186:415–27.

    Article  Google Scholar 

  • Valentin R, Horga R, Bonelli B, Garrone E, Di Renzo F, Quignard F. Acidity of alginate aerogels studied by FTIR spectroscopy of probe molecules. Macromol Symp. 2005;230:71–7.

    Article  Google Scholar 

  • Valentin R, Bonelli B, Garrone E, Di Renzo F, Quignard F. Accessibility of the functional groups of chitosan aerogel probed by FT-IR-monitored deuteration. Biomacromolecules. 2007;8:3646–50.

    Article  Google Scholar 

  • Van Bommel MJ, de Haan AB. Drying of silica gels with supercritical carbon liquid. J Mater Sci. 1994;29:943–8.

    Article  Google Scholar 

  • Venkateswara Rao A, Kulkarni MM. Effect of glycerol additive on physical properties of hydrophobic silica aerogels. Mater Chem Phys. 2003;77:819–25.

    Article  Google Scholar 

  • Vuillard G, Sanchez M. Vitrification et cristallisation dans le système binaire eau - méthanol. Bull Soc Chim Fr. 1961;10:1877–80.

    Google Scholar 

  • Wang SY, Wu NL. Tin acid gel shrinkage during CO2 supercritical drying. J Non-Cryst Solids. 1998;224:259–66.

    Article  Google Scholar 

  • Wawrzyniak P, Rogacki G, Pruba J, Bartczak Z. Effective diffusion coefficient in the low temperature process of silica aerogel production. J Non-Cryst Solids. 2001;285:50–6.

    Article  Google Scholar 

  • Wei TY, Lu SY, Chang YC. Rich photoluminescence emission of SnO2–SiO2 composite aerogels prepared with a co-fed precursor sol–gel process. J Chin Inst Chem Eng. 2007;38:477–81.

    Article  Google Scholar 

  • Wei TY, Kuo CY, Hsu YJ, Lu SY, Chang YC. Tin oxide nanocrystals embedded in silica aerogel: photoluminescence and photocatalysis. Microporous Mesoporous Mater. 2008;112:580–8.

    Article  Google Scholar 

  • Woignier T. Contribution à l’obtention de verres par la voie sol-gel [PhD dissertation]. Montpellier; 1984.

    Google Scholar 

  • Woignier T, Phalippou J, Prassas M. Glasses from aerogels part 2: the aerogel glass transformation. J Mater Sci. 1990;25:3118–26.

    Article  Google Scholar 

  • Woignier T, Scherer GW, Alaoui A. Stress in aerogel during depressurization of autoclave : II silica gels. J Sol-Gel Sci Tech. 1994;3:141–50.

    Article  Google Scholar 

  • Woignier T, Primera J, Lamy M, Fehr C, Anglaret E. The use of gels as host matrices for chemical species. Different ways to control the permeability and the mechanical properties. J Non-Cryst Solids. 2005;350:298–306.

    Google Scholar 

  • Woignier T, Primera J, Duffours L, Dieudonné P. Preservation of the allophanic soils structure by supercritical drying. Microporous Mesoporous Mater. 2007;109(1–3):370–5.

    Google Scholar 

  • Woignier T, Duffours L, Colombel P, Durin C. Aerogels materials as space debris collectors. Adv Mater Sci Eng. 2013;2013:484153.6 pages

    Article  Google Scholar 

  • Woignier T., Duffours L., Colombel P., Dieudonné P.. Nanoporous clay with carbon sink and pesticide trapping properties. Eur Phys J. 2015; 224: 1945–1962, Special Topics.

    Google Scholar 

  • Wyley RJ, Wang CT, Peri JB. Vanadium-titanium oxide aerogels catalysts. J Non-Cryst Solids. 1995;186:408–14.

    Article  Google Scholar 

  • Yao CJ, Liu X, Risen WM. biopolymer containing aerogels : chitosan silica hybrid aerogels, Chap. 18. In: Aegerter MA, Leventis N, Koebel MM, editors. Aerogels handbook. New York: Springer Science; 2011. p. 385–401.

    Chapter  Google Scholar 

  • Yim TJ, Kim SY, Yoo KP. Fabrication and thermophysical characterization of nano-porous silica-polyurethane hybrid aerogel by sol-gel processing and supercritical solvent drying technique. Korean J Chem Eng. 2002;19:159–66.

    Article  Google Scholar 

  • Yoda S, Ohshima S, Ikazaki F. Supercritical drying with zeolite for the preparation of silica aerogels. J Non-Cryst Solids. 1998;231:41–8.

    Article  Google Scholar 

  • Yokogawa H. Transparent silica aerogels blocks for high energy physics research, chap. 28. In: Aegerter MA, Leventis N, Koebel MM, editors. Aerogels handbook. New York: Springer Science; 2011. p. 651–64.

    Chapter  Google Scholar 

  • Yokogawa H, Yokoyama M. Hydrophobic silica aerogels. J Non-Cryst Solids. 1995;186:23–9.

    Article  Google Scholar 

  • Yoldas BE, Annen MJ, Bostaph J. Chemical engineering of aerogel morphology formed under nonsupercritical conditions for thermal insulation. Chem Mater. 2000;12:2475–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Woignier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Woignier, T., Phalippou, J., Despetis, F., Calas-Etienne, S. (2016). Aerogel Processing. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics