Skip to main content

Clustering Algorithm Based on Molecular Dynamics with Nose-Hoover Thermostat. Application to Japanese Candlesticks

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9120))

Included in the following conference series:

Abstract

A hybrid pattern clustering algorithm connecting Particle Swarm Optimization with Simulated Annealing is proposed. The swarm particles are directly associated with the centroids of each cluster. They are assumed to move in the phase space associated under the influence of a potential generated by each pattern to be partitioned and interacting with each other. Thus, the problem of partitioning acquires a direct physical interpretation. The motion of swarm particles is simulated with the help of a thermal bath represented by one additional dynamical variable within the Nose-Hoover formalism. The temperature is decreased at each step in the dynamics of the swarm providing the resemblance to the Simulated Annealing. Clustering of the Japanese candlesticks which appear in the dynamics of assets in the Warsaw stock market is used as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Evangelou, I.E., Hadjimitsis, D.G., Lazakidou, A.A., Clayton, C.: Data Mining and Knowledge Discovery in Complex Image Data using Artificial Neural Networks. In: Workshop on Complex Reasoning on Geographical Data, Cyprus (2001)

    Google Scholar 

  2. Lillesand, T., Keifer, R.: Remote Sensing and Image Interpretation. John Wiley and Sons, New York (1994)

    Google Scholar 

  3. Rao, M.R.: Cluster Analysis and Mathematical Programming. J. Am. Stat. Assoc. 22, 622 (1994)

    Google Scholar 

  4. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley and Sons, New York (1973)

    Google Scholar 

  5. Everitt, B.S.: Cluster Analysis. Halsted Press (1993)

    Google Scholar 

  6. Xu, R., Wunsch, D.: Clustering. IEEE Press Series on Computational Intelligence (2008)

    Google Scholar 

  7. Forgy, E.W.: Cluster analysis of multivariate data: efficiency versus interpretability of classification. Biometrics 21, 768 (1965)

    Google Scholar 

  8. Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers C-20, 6886 (1971)

    Google Scholar 

  9. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    Google Scholar 

  10. Mao, J., Jain, A.K.: Artificial neural networks for feature extraction and multivariate data projection. IEEE Trans. Neural Networks 6, 296 (1995)

    Article  Google Scholar 

  11. Pal, N.R., Bezdek, J.C., Tsao, E.C.K.: Generalized clustering networks and Kohonen’s self-organizing scheme. IEEE Trans. Neural Networks 4, 549 (1993)

    Article  Google Scholar 

  12. Kohonen, T.: Self-Organizing Maps. Series in Information Sciences, vol. 30. Springer, Berlin (1995)

    Google Scholar 

  13. Falkenauer, E.: Genetic Algorithms and Grouping Problems. John Wiley and Sons, New York (1998)

    Google Scholar 

  14. Paterlini, S., Minerva, T.: Evolutionary Approaches for Cluster Analysis. In: Bonarini, A., Masulli, F., Pasi, G. (eds.) Soft Computing Applications, pp. 167–178. Springer, Berlin (2003)

    Google Scholar 

  15. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645 (2005)

    Article  Google Scholar 

  16. Rokach, L., Maimon, O.: Clustering Methods. In: Data Mining and Knowledge Discovery Handbook, pp. 321–352. Springer, Berlin (2005)

    Chapter  Google Scholar 

  17. Mitra, S., Pal, S.K., Mitra, P.: Data mining in soft computing framework: A survey. IEEE Transactions on Neural Networks 13(3) (2002)

    Google Scholar 

  18. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony of cooperating agents. IEEE Trans. Systems Man and Cybernetics, Part B: Cybernetics 26, 21 (1996)

    Article  Google Scholar 

  19. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. Evolutionary Computing 1, 5366 (1997)

    Article  Google Scholar 

  20. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  21. Omran, M., Salman, A., Engelbrecht, A.P.: Image Classification using Particle Swarm Optimization. In: Proc. Conference on Simulated Evolution and Learning, vol. 1, pp. 370–374 (2002)

    Google Scholar 

  22. Omran, M., Engelbrecht, A.P., Salman, A.: Particle Swarm Optimization Method for Image Clustering. International Journal of Pattern Recognition and Artificial Intelligence 19, 297 (2005)

    Article  Google Scholar 

  23. Das, S., Abraham, A.: Pattern Clustering Using a Swarm Intelligence Approach. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 469–504. Springer, Berlin (2010)

    Google Scholar 

  24. Nose, S.: A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81, 511 (1984)

    Article  Google Scholar 

  25. Hoover, W.G.: Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)

    Article  Google Scholar 

  26. Fukuda, I.: Application of the Nose-Hoover method to optimization problems. Phys. Rev. E 64(1), 16203 (2001)

    Article  Google Scholar 

  27. Murphy, J.: Technical Analysis of Financial Markets. New York Institute of Finance (1999)

    Google Scholar 

  28. Wikipedia. Candlestick chart – Wikipedia, the free encyclopedia (2014), http://en.wikipedia.org/w/index.php?title=Candlestick_chart (accessed December 19, 2014)

  29. Verlet, L.: Computer “Experiments” on classical fluids. I. Thermodynamical properties of Lennard Jones molecules. Phys. Rev. 159(1), 98 (1967)

    Article  Google Scholar 

  30. Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 76, 648 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek J. Chmielewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chmielewski, L.J., Janowicz, M., Orłowski, A. (2015). Clustering Algorithm Based on Molecular Dynamics with Nose-Hoover Thermostat. Application to Japanese Candlesticks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9120. Springer, Cham. https://doi.org/10.1007/978-3-319-19369-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19369-4_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19368-7

  • Online ISBN: 978-3-319-19369-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics