Skip to main content

How to Prove that a Language Is Regular or Star-Free?

  • Conference paper
  • First Online:
Language and Automata Theory and Applications (LATA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12038))

Abstract

This survey article presents some standard and less standard methods used to prove that a language is regular or star-free.

J.-É. Pin—Work supported by the DeLTA project (ANR-16-CE40-0007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let M and N be monoids. We say that M divides N if there is a submonoid R of N and a monoid morphism that maps R onto M.

References

  1. Bala, S.: Complexity of regular language matching and other decidable cases of the satisfiability problem for constraints between regular open terms. Theory Comput. Syst. 39(1), 137–163 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berstel, J.: Transductions and Context-Free Languages. Teubner (1979)

    Google Scholar 

  3. Berstel, J., Boasson, L., Carton, O., Petazzoni, B., Pin, J.-É.: Operations preserving recognizable languages. Theor. Comput. Sci. 354, 405–420 (2006)

    Article  MATH  Google Scholar 

  4. Bertoni, A., Mereghetti, C., Palano, B.: Quantum computing: 1-way quantum automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 1–20. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45007-6_1

    Chapter  Google Scholar 

  5. Bovet, D.P., Varricchio, S.: On the regularity of languages on a binary alphabet generated by copying systems. Inform. Process. Lett. 44(3), 119–123 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bucher, W., Ehrenfeucht, A., Haussler, D.: On total regulators generated by derivation relations. Theor. Comput. Sci. 40(2–3), 131–148 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik und Grundl. Math. 6, 66–92 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  8. Büchi, J.R.: Regular canonical systems. Arch. Math. Logik Grundlagenforsch. 6, 91–111 (1964) (1964)

    Google Scholar 

  9. Carton, O.: Langages formels, calculabilité et complexité. Vuibert (2008)

    Google Scholar 

  10. Carton, O., Thomas, W.: The monadic theory of morphic infinite words and generalizations. Inform. Comput. 176, 51–76 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London (1971)

    MATH  Google Scholar 

  12. D’Alessandro, F., Varricchio, S.: Well quasi-orders in formal language theory. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 84–95. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85780-8_6

    Chapter  MATH  Google Scholar 

  13. De Luca, A., Varricchio, S.: Finiteness and Regularity in Semigroups and Formal Languages. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59849-4

    Book  Google Scholar 

  14. Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free languages. Theor. Comput. Sci. 27(3), 311–332 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ehrenfeucht, A., Parikh, R., Rozenberg, G.: Pumping lemmas for regular sets. SIAM J. Comput. 10(3), 536–541 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ehrenfeucht, A., Rozenberg, G.: On regularity of languages generated by copying systems. Discrete Appl. Math. 8(3), 313–317 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eiter, T., Gottlob, G., Gurevich, Y.: Existential second-order logic over strings. J. ACM 47(1), 77–131 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eiter, T., Gottlob, G., Schwentick, T.: Second-order logic over strings: regular and non-regular fragments. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 37–56. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46011-X_4

    Chapter  Google Scholar 

  19. Eiter, T., Gottlob, G., Schwentick, T.: The model checking problem for prefix classes of second-order logic: a survey. In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 227–250. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15025-8_13

    Chapter  MATH  Google Scholar 

  20. Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Trans. Am. Math. Soc. 98, 21–51 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hartmanis, J.: Computational complexity of one-tape Turing machine computations. J. Assoc. Comput. Mach. 15, 325–339 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hofbauer, D., Waldmann, J.: Deleting string rewriting systems preserve regularity. Theor. Comput. Sci. 327(3), 301–317 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hopcroft, J.E., Ullman, J.D.: Introduction To Automata Theory, Languages, And Computation. Addison-Wesley Publishing Co., Reading (1979). Addison-Wesley Series in Computer Science

    Google Scholar 

  24. Jaffe, J.: A necessary and sufficient pumping lemma for regular languages. SIGACT News 10(2), 48–49 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kamp, J.: Tense Logic and the Theory of Linear Order. Ph.D. thesis, University of California, Los Angeles (1968)

    Google Scholar 

  26. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Automata Studies, pp. 3–41. Princeton University Press, Princeton (1956). Ann. Math. Stud. 34

    Google Scholar 

  27. Kosaraju, S.R.: Regularity preserving functions. SIGACT News 6(2), 16–17 (1974). Correction to “Regularity preserving functions”, SIGACT News 6(3), (1974), p. 22

    Article  Google Scholar 

  28. Kozen, D.: On regularity-preserving functions. Bull. Europ. Assoc. Theor. Comput. Sci. 58, 131–138 (1996). Erratum: on regularity-preserving functions. Bull. Europ. Assoc. Theor. Comput. Sci. 59, 455 (1996)

    MATH  Google Scholar 

  29. Kozen, D.C.: Automata and computability. Undergraduate Texts in Computer Science. Springer, New York (1997). https://doi.org/10.1007/978-3-642-85706-5

    Book  Google Scholar 

  30. Kunc, M.: Regular solutions of language inequalities and well quasi-orders. Theor. Comput. Sci. 348(2–3), 277–293 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kunc, M.: The power of commuting with finite sets of words. Theory Comput. Syst. 40(4), 521–551 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kunc, M., Okhotin, A.: Language equations. In: Pin, J.E. (ed.) Handbook of Automata Theory, vol. II, chap. 21. European Mathematical Society, Zürich (2020, To appear)

    Google Scholar 

  33. Leupold, P.: Languages generated by iterated idempotency. Theor. Comput. Sci. 370(1–3), 170–185 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Leupold, P.: On regularity-preservation by string-rewriting systems. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 345–356. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4_32

    Chapter  Google Scholar 

  35. McNaughton, R., Papert, S.: Counter-Free Automata. The M.I.T. Press, Cambridge (1971). With an appendix by William Henneman, M.I.T. ResearchMonograph, No. 65

    MATH  Google Scholar 

  36. Niwinśki, D., Rytter, W.: 200 Problems in Formal Languages and Automata Theory. University of Warsaw (2017)

    Google Scholar 

  37. Otto, F.: On the connections between rewriting and formal language theory. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 332–355. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48685-2_27

    Chapter  MATH  Google Scholar 

  38. Pin, J.-É.: Topologies for the free monoid. J. Algebra 137, 297–337 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pin, J.-É., Sakarovitch, J.: Some operations and transductions that preserve rationality. In: Cremers, A.B., Kriegel, H.-P. (eds.) GI-TCS 1983. LNCS, vol. 145, pp. 277–288. Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0036488

    Chapter  Google Scholar 

  40. Pin, J.-É., Sakarovitch, J.: Une application de la représentation matricielle des transductions. Theor. Comput. Sci. 35, 271–293 (1985)

    Article  MATH  Google Scholar 

  41. Pin, J.-É., Silva, P.V.: A topological approach to transductions. Theor. Comput. Sci. 340, 443–456 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Am. Math. Soc. 141, 1–35 (1969)

    MathSciNet  MATH  Google Scholar 

  43. Restivo, A.: Codes and aperiodic languages. In: Erste Fachtagung der Gesellschaft für Informatik über Automatentheorie und Formale Sprachen (Bonn, 1973), LNCS, vol. 2, pp. 175–181. Springer, Berlin (1973)

    Google Scholar 

  44. Restivo, A., Reutenauer, C.: On cancellation properties of languages which are supports of rational power series. J. Comput. Syst. Sci. 29(2), 153–159 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cambridge (2009). Translated from the 2003 French original by Reuben Thomas

    Book  MATH  Google Scholar 

  46. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8, 190–194 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  47. Seiferas, J.I., McNaughton, R.: Regularity-preserving relations. Theor. Comput. Sci. 2(2), 147–154 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  48. Siefkes, D.: Decidable extensions of monadic second order successor arithmetic. In: Automatentheorie und formale Sprachen (Tagung, Math. Forschungsinst., Oberwolfach, 1969), pp. 441–472. Bibliographisches Inst., Mannheim (1970)

    Google Scholar 

  49. Sipser, M.: Introduction to the Theory of Computation. 3rd edn. Cengage Learning (2012)

    Google Scholar 

  50. Stanat, D.F., Weiss, S.F.: A pumping theorem for regular languages. SIGACT News 14(1), 36–37 (1982)

    Article  MATH  Google Scholar 

  51. Stearns, R.E., Hartmanis, J.: Regularity preserving modifications of regular expressions. Inf. Control 6, 55–69 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  52. Straubing, H.: Relational morphisms and operations on recognizable sets. RAIRO Inf. Theor. 15, 149–159 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  53. Trakhtenbrot, B.A.: Barzdin\(^{\prime }\), Y.M.: Finite Automata, Behavior and Synthesis. North-Holland Publishing Co., Amsterdam (1973). Translated from the Russian by D. Louvish, English translation edited by E. Shamir and L. H. Landweber, Fundamental Studies in Computer Science, vol. 1

    Google Scholar 

  54. Varricchio, S.: A pumping condition for regular sets. SIAM J. Comput. 26(3), 764–771 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang, G.Q.: Automata, boolean matrices, and ultimate periodicity. Inform. Comput. 152(1), 138–154 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Olivier Carton for his useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Éric Pin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pin, JÉ. (2020). How to Prove that a Language Is Regular or Star-Free?. In: Leporati, A., Martín-Vide, C., Shapira, D., Zandron, C. (eds) Language and Automata Theory and Applications. LATA 2020. Lecture Notes in Computer Science(), vol 12038. Springer, Cham. https://doi.org/10.1007/978-3-030-40608-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40608-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40607-3

  • Online ISBN: 978-3-030-40608-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics