Skip to main content

Visualizing Chemokine-Dependent T Cell Activation and Migration in Response to Central Nervous System Infection

  • Protocol
  • First Online:
Chemokines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1013))

Abstract

In response to central nervous system (CNS) injury and infection, astrocytes, neurons, and CNS vasculature express several chemokines, including CCL21. Quantitative polymerase chain reaction (qPCR), western blot, and immunohistochemical methods can quantify mRNA and protein expression. However, these methods do not quantify chemokine bioavailability and bioactivity, variables modified by many environmental factors including composition of the extracellular matrix (ECM). Here we illustrate how two-photon microscopy and carboxyfluorescein succinimidyl ester (CFSE or CFDA SE) labeling of T cells coupled with flow cytometry can be used as tools to assess chemokine-mediated regulation of T cell proliferation, activation, and migration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lalor SJ, Segal BM (2010) Lymphoid chemokines in the CNS. J Neuroimmunol 224:56–61

    Article  PubMed  CAS  Google Scholar 

  2. Engelhardt B (2006) Molecular mechanisms involved in T cell migration across the blood brain barrier. J Neural Transm 113:477–485

    Article  PubMed  CAS  Google Scholar 

  3. Ploix CC, Noor S, Crane J, Masek K, Carter W, Lo DD, Wilson EH, Carson MJ (2011) CNS-derived CCL21 is both sufficient to drice homeostatic CD4+ T cell proliferation and necessary for efficient CD4+ T cell migration into the CNS parenchyma following Toxoplasma gondii infection. Brain Behav Immun 25:883–896

    Article  PubMed  CAS  Google Scholar 

  4. Noor S, Habashy AS, Nance JP, Clark RT, Nemati K, Carson MJ, Wilson EH (2010) CCR7-dependent immunity during acute Toxoplasma gondii infection. Infect Immun 78:2257–2263

    Article  PubMed  CAS  Google Scholar 

  5. Ploix C, Lo D, Carson MJ (2001) A ligand for the chemokine receptor CCR7 can influence the homeostatic proliferation of CD4+ T cells and progression of autoimmunity. J Immunol 167:6724–6730

    PubMed  CAS  Google Scholar 

  6. Wilson EH, Harris TH, Mrass P, John B, Tait ED, Wu GF, Pepper M, Wherry EJ, Dzierzinski F, Roos D, Haydon PG, Laufer TM, Weninger W, Hunter CA (2009) Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity 30:300–311

    Article  PubMed  CAS  Google Scholar 

  7. Parish CR (1999) Fluorescent dyes for lymphocyte migration and proliferation studies. Immunol Cell Biol 77:499–508

    Article  PubMed  CAS  Google Scholar 

  8. Lyons AB (2000) Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods 243:147–154

    Article  PubMed  CAS  Google Scholar 

  9. Lyons AB, Hasbold J, Hodgkin PD (2001) Flow cytometric analysis of cell division history using dilution of carboxyfluoresceindiacetate succinimidyl ester, a stably integrated fluorescent probe. Methods Cell Biol 63:375–398

    Article  PubMed  CAS  Google Scholar 

  10. Li CR, Santoso S, Lo DD (2007) Quantitative analysis of T cell homeostatic proliferation. Cell Immunol 250:40–54

    Article  PubMed  CAS  Google Scholar 

  11. Wilson EH, Weninger W, Hunter CA (2010) Trafficking of immune cells in the central nervous system. J Clin Invest 120:1368–1379

    Article  PubMed  CAS  Google Scholar 

  12. Textor J, Peixoto A, Henrickson SE, Sinn M, von Andrian UH, Westermann J (2011) Defining the quantitative limits of intravital two-photon lymphocyte tracking. Proc Natl Acad Sci USA 108:12401–12406

    Article  PubMed  CAS  Google Scholar 

  13. Bajénoff M, Germain RN (2007) Seeing is believing: a focus on the contribution of microscopic imaging to our understanding of immune system function. Eur J Immunol 37(S1):S18–S33

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Assay development and data generation are supported by a University of California—Riverside Chancellor’s strategic initiative and National Institutes of Health grants NS071160A and NS072298A. The authors acknowledge Corinne Ploix for contributions toward standardization of flow cytometric protocols and Sean Wilson and Monica Rubalcava (Loma Linda Univerisity School of Medicine) for contributions toward optimization of multiphoton microscopy protocols.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Carson, M.J., Wilson, E.H. (2013). Visualizing Chemokine-Dependent T Cell Activation and Migration in Response to Central Nervous System Infection. In: Cardona, A., Ubogu, E. (eds) Chemokines. Methods in Molecular Biology, vol 1013. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-426-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-426-5_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-425-8

  • Online ISBN: 978-1-62703-426-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics