Skip to main content

Global Alignment of Protein–Protein Interaction Networks

  • Protocol
  • First Online:
Data Mining for Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 939))

Abstract

Sequence-based comparisons have been the workhorse of bioinformatics for the past four decades, furthering our understanding of gene function and evolution. Over the last decade, a plethora of technologies have matured for measuring Protein–protein interactions (PPIs) at large scale, yielding comprehensive PPI networks for over ten species. In this chapter, we review methods for harnessing PPI networks to improve the detection of orthologous proteins across species. In particular, we focus on pairwise global network alignment methods that aim to find a mapping between the networks of two species that maximizes the sequence and interaction similarities between matched nodes. We further suggest a novel evolutionary-based global alignment algorithm. We then compare the different methods on a yeast-fly-worm benchmark, discuss their performance differences, and conclude with open directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fields S, Song O (1989) A novel genetic system to detect Protein–protein interactions. Nature 340(6230):245–246

    Article  PubMed  CAS  Google Scholar 

  2. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  PubMed  CAS  Google Scholar 

  3. Kelley BP, Yuan B, Lewitter F, Sharan R, Stockwell BR, Ideker T (2004) PathBLAST: a tool for alignment of protein interaction networks. Nucl Acids Res 32(Suppl 2):W83–W88

    Article  PubMed  CAS  Google Scholar 

  4. Sharan R, Suthram S, Kelley R, Kuhn T, McCuine S, Uetz P, Sittler T, Karp R, Ideker T (2005) Conserved patterns of protein interaction in multiple species. Proc Natl Acad Sci USA 102(6):1974–1979

    Article  PubMed  CAS  Google Scholar 

  5. Kalaev M, Bafna V, Sharan R (2009) Fast and accurate alignment of multiple protein networks. J Comput Biol 16(8):989–999

    Article  PubMed  CAS  Google Scholar 

  6. Koyuturk M, Kim Y, Topkara U, Subramaniam S, Szpankowski W, Grama A (2006) Pairwise alignment of protein interaction networks. J Comput Biol 13(2):182–199

    Article  PubMed  Google Scholar 

  7. Singh R, Xu J, Berger B (2008) Global alignment of multiple protein interaction networks with application to functional orthology detection. Proc Natl Acad Sci USA 105(35):12763–12768

    Article  PubMed  CAS  Google Scholar 

  8. Remm M, Storm CE, Sonnhammer EL (2001) Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol Biol 314(5):1041–1052

    Article  PubMed  CAS  Google Scholar 

  9. Tatusov R et al (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 1(4):41

    Article  Google Scholar 

  10. Datta RS, Meacham C, Samad B, Neyer C, Sjolander K (2009) Berkeley PHOG: phyloFacts orthology group prediction web server. Nucl Acids Res 37(Suppl 2):84–89

    Article  Google Scholar 

  11. Klau G (2009) A new graph-based method for pairwise global network alignment. BMC Bioinformatics 10(Suppl 1):S59

    Article  PubMed  Google Scholar 

  12. Zaslavskiy M, Bach F, Vert JP (2009) Global alignment of Protein–protein interaction networks by graph matching methods. Bioinformatics 25(12):i259–1267

    Article  PubMed  CAS  Google Scholar 

  13. Bandyopadhyay S, Sharan R, Ideker T (2006) Systematic identification of functional orthologs based on protein network comparison. Genome Res 16(3):428–435

    Article  PubMed  CAS  Google Scholar 

  14. Yosef N, Sharan R, Noble WS (2008) Improved network-based identification of protein orthologs. Bioinformatics 24(16):i200–i206

    Article  PubMed  Google Scholar 

  15. Milenkovic T, Wong W, Hayes W, Przulj N (2010) Optimal network alignment with graphlet degree vectors. Canc Inform 9:121–137

    Article  CAS  Google Scholar 

  16. Kuchaiev O, Milenkovic T, Memisevic V, Hayes W, Przulj N (2010) Topological network alignment uncovers biological function and phylogeny. J R Soc Interface 7(50):1341–1354

    Google Scholar 

  17. Smith AFM, Roberts GO (1993) Bayesian computation via the gibbs sampler and related markov chain monte carlo methods. J Roy Stat Soc B Stat Meth 55(1):3–23

    Google Scholar 

  18. Berg J, Lassig M, Wagner A (2004) Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications. BMC Evol Biol 4(1):51

    Article  PubMed  Google Scholar 

  19. Li S et al (2004) A map of the interactome network of the Metazoan C. elegans. Science 303(5657):540–543

    Google Scholar 

  20. Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, Eisenberg D (2002) DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucl Acids Res 30(1):303–305

    Article  PubMed  CAS  Google Scholar 

  21. Chen N et al (2005) WormBase: a comprehensive data resource for Caenorhabditis biology and genomics. Nucl Acids Res 33(Suppl 1):D383–389

    PubMed  CAS  Google Scholar 

  22. Wheeler DL et al (2005) Database resources of the national center for biotechnology information. Nucl Acids Res 33(Suppl 1):D39–D45

    PubMed  CAS  Google Scholar 

  23. Ashburner M (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  24. Schlicker A, Albrecht M (2007) FunSimMat: a comprehensive functional similarity database. Nucl Acids Res 36(Suppl 1):D434–439

    Article  PubMed  Google Scholar 

  25. Liao CS, Lu K, Baym M, Singh R, Berger, B (2009) IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics 25(12):i253–258

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

M.M. was partially supported by the Army Research Laboratory, under Cooperative Agreement Number W911NF-09-2-0053. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the US Government. The US Government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation here on. R.S. was supported by a research grant from the Israel Science Foundation (grant no. 385/06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roded Sharan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mongiovì, M., Sharan, R. (2013). Global Alignment of Protein–Protein Interaction Networks. In: Mamitsuka, H., DeLisi, C., Kanehisa, M. (eds) Data Mining for Systems Biology. Methods in Molecular Biology, vol 939. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-107-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-107-3_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-106-6

  • Online ISBN: 978-1-62703-107-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics