Skip to main content

Studying Cell Cycle Checkpoints Using Drosophila Cultured Cells

  • Protocol
  • First Online:
Cell Cycle Checkpoints

Part of the book series: Methods in Molecular Biology ((MIMB,volume 782))

Abstract

Drosophila cell lines are valuable tools to study a number of cellular processes, including DNA damage responses and cell cycle checkpoint control. Using an in vitro system instead of a whole organism has two main advantages: it saves time and simple and effective molecular techniques are available. It has been shown that Drosophila cells, similarly to mammalian cells, display cell cycle checkpoint pathways required to survive DNA damaging events (de Vries et al. 2005, Journal of Cell Science 118, 1833–1842; Bae et al. 1995, Experimental Cell Research 217, 541–545). Moreover, a number of proteins involved in checkpoint and cell cycle control in mammals are highly conserved among different species, including Drosophila (de Vries et al. 2005, Journal of Cell Science 118, 1833–1842; Bae et al. 1995, Experimental Cell Research 217, 541–545; LaRocque et al. 2007, Genetics 175, 1023–1033; Sibon et al. 1999, Current Biology 9, 302–312; Purdy et al. 2005, Journal of Cell Science 118, 3305–3315). Because of straightforward and highly efficient methods to downregulate specific transcripts in Drosophila cells, these cells are an excellent system for genome-wide RNA interference (RNAi) screens. Thus, the following methods, assays and techniques: Drosophila cell culture, RNAi, introducing DNA damaging events, determination of cell cycle arrest, and determination of cell cycle distributions described here may well be applied to identifying new players in checkpoint mechanisms and will be helpful to investigate the function of these new players in detail. Results obtained with studies using in vitro systems can subsequently be extended to studies in the complete organism as described in the chapters provided by the Su laboratory and the Takada laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Vries, H. I., Uyetake, L., Lemstra, W., Brunsting, J. F., Su, T. T., Kampinga, H. H., and Sibon, O. C. M. (2005) Grp/DChk1 is required for G(2)-M checkpoint activation in Drosophila S2 cells, whereas Dmnk/DChk2 is dispensable. Journal of Cell Science 118, 1833–1842.

    Article  PubMed  Google Scholar 

  2. Bae, I., Smith, M. L., and Fornace, A. J. (1995) Induction of P53-Like, Mdm2-Like, and Waf1/Cip1-like molecules in insect cells by DNA-damaging agents. Experimental Cell Research 217, 541–545.

    Article  PubMed  CAS  Google Scholar 

  3. LaRocque, J. R., Jaklevic, B., Su, T. T., and Sekelsky, J. (2007) Drosophila ATR in double-strand break repair. Genetics 175, 1023–1033.

    Article  PubMed  CAS  Google Scholar 

  4. Sibon, O. C. M., Laurencon, A., Hawley, R. S., and Theurkauf, W. E. (1999) The Drosophila ATM homologue Mei-41 has an essential checkpoint function at the midblastula transition. Current Biology 9, 302–312.

    Article  PubMed  CAS  Google Scholar 

  5. Purdy, A., Uyetake, L., Cordeiro, M. G., and Su, T. T. (2005) Regulation of mitosis in response to damaged or incompletely replicated DNA require different levels of Grapes (Drosophila Chk1). Journal of Cell Science 118, 3305–3315.

    Article  PubMed  CAS  Google Scholar 

  6. Jaklevic, B., Uyetake, L., Lemstra, W., Chang, J., Leary, W., Edwards, A., Vidwans, S., Sibon, O., and Su, T. T. (2006) Contribution of growth and cell cycle checkpoints to radiation survival in Drosophila. Genetics 174, 1963–1972.

    Article  PubMed  CAS  Google Scholar 

  7. Song, Y. H. (2005) Drosophila melanogaster: a model for the study of DNA damage checkpoint response. Molecules and Cells 19, 167–179.

    PubMed  CAS  Google Scholar 

  8. Schneider, I. (1972) Cell lines derived from late embryonic stages of drosophila-melanogaster. Journal of Embryology and Experimental Morphology 27, 353–365.

    PubMed  CAS  Google Scholar 

  9. Echalier, G., and Ohanessi, A. (1969) Isolation in cultivation in vitro of diploid cell strains of drosophila melanogaster. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie D 268, 1771–1773.

    CAS  Google Scholar 

  10. Koc, A., Wheeler, L. J., Mathews, C. K., and Merrill, G. F. (2004) Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. Journal of Biological Chemistry 279, 223–230.

    Article  PubMed  CAS  Google Scholar 

  11. Dianov, G. L., O’Neill, P., and Goodhead, D. T. (2001) Securing genome stability by orchestrating DNA repair: removal of radiation-induced clustered lesions in DNA. Bioessays 23, 745–749.

    Article  PubMed  CAS  Google Scholar 

  12. Povirk, L. R. (2006) Biochemical mechanisms of chromosomal translocations resulting from DNA double-strand breaks. DNA Repair 5, 1199–1212.

    Article  PubMed  CAS  Google Scholar 

  13. Hendzel, M. J., Wei, Y., Mancini, M. A., VanHooser, A., Ranalli, T., Brinkley, B. R., BazettJones, D. P., and Allis, C. D. (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360.

    Article  PubMed  CAS  Google Scholar 

  14. Clemens, J. C., Worby, C. A., Simonson-Leff, N., Muda, M., Maehama, T., Hemmings, B. A., and Dixon, J. E. (2000) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proceedings of the National Academy of Sciences of the United States of America 97, 6499–6503.

    Article  PubMed  CAS  Google Scholar 

  15. Muller, P., Boutros, M., and Zeidler, M. P. (2008) Identification of JAK/STAT pathway regulators-Insights from RNAi screens. Seminars in Cell & Developmental Biology 19, 360–369.

    Article  Google Scholar 

  16. Bjorklund, M., Taipale, M., Varjosalo, M., Saharinen, J., Lahdenpera, J., and Taipale, J. (2006) Identification of pathways regulating cell size and cell-cycle progression by RNAi. Nature 439, 1009–1013.

    Article  PubMed  Google Scholar 

  17. Boutros, M., Kiger, A. A., Armknecht, S., Kerr, K., Hild, M., Koch, B., Haas, S. A., Paro, R., Perrimon, N., and Heidelberg Fly Array, C. (2004) Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835.

    Article  PubMed  CAS  Google Scholar 

  18. Kiger, A. A., Baum, B., Jones, S., Jones, M. R., Coulson, A., Echeverri, C., and Perrimon, N. (2003) A functional genomic analysis of cell morphology using RNA interference. Journal of Biology 2, 27.

    Article  PubMed  CAS  Google Scholar 

  19. Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296.

    Article  PubMed  CAS  Google Scholar 

  20. Caplen, N. J., Fleenor, J., Fire, A., and Morgan, R. A. (2000) dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252, 95–105.

    Article  PubMed  CAS  Google Scholar 

  21. Kennerdell, J. R., and Carthew, R. W. (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017–1026.

    Article  PubMed  CAS  Google Scholar 

  22. de la Cruz, A. F. A., and Edgar, B. A. (2008) Flow cytometric analysis of Drosophila cells. Methods in Molecular Biology 420, 373–389.

    Article  PubMed  Google Scholar 

  23. Phillips, H. J., and Terryberry, J. E. (1957) Counting actively metabolizing tissue cultured cells. Experimental Cell Research 13, 341–347.

    Article  PubMed  CAS  Google Scholar 

  24. Arziman, Z., Horn, T., and Boutros, M. (2005) E-RNAi: a web application to design optimized RNAi constructs. Nucleic Acids Research 33, W582–W588.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ody C.M. Sibon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Siudeja, K., de Jong, J., Sibon, O.C. (2011). Studying Cell Cycle Checkpoints Using Drosophila Cultured Cells. In: Li, W. (eds) Cell Cycle Checkpoints. Methods in Molecular Biology, vol 782. Humana Press. https://doi.org/10.1007/978-1-61779-273-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-273-1_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-272-4

  • Online ISBN: 978-1-61779-273-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics