Skip to main content

Utilization of Marrow Stromal Cells for Gene Transfer into the CNS

  • Chapter
Neural Stem Cells for Brain and Spinal Cord Repair

Abstract

In the past several decades, neurotransplantation has been investigated for the study of development of the normal nervous system and possible functional restoration and repair of diseased and damaged nervous tissue (1,2). In patients with Parkinson’s disease, transplantation of dopamine-producing human and pig fetal tissues has resulted in varying degrees of clinical improvements, which correlated with graft survival and anatomical integration of the grafted fetal cells into the host brain (3–5), albeit, the control of dopamine release remains an issue (5). In animal studies, implantation of neural stem cells and partially differentiated embryonic stem cells into lesioned brain and spinal cord resulted in more rapid behavioral improvement in experimental models of spinal cord injury, stroke, and neurotrauma (6–11). Although implantation of embryonic stem cells can be a promising method of cell therapy, obtaining fetal and embryonic tissues has presented major logistical, ethical, and immunological barriers (12,13). Thus, autologous cells from the bone marrow, marrow stromal cells, can be an attractive alternative source of tissue for grafting and treatment of neurological diseases (11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bjorklund, A. (1991) Neural transplantation—an experimental tool with clinical possibilities. TINS 14, 319–322.

    PubMed  CAS  Google Scholar 

  2. Bjorklund, A. (1993) Better cells for brain repair. Science 276, 66–71.

    Google Scholar 

  3. Kordower, J. H., Freeman, T. B., Snow, B. J., Vingerhoets, F. J., and Mufson, E. J. (1995) Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N. Engl. J. Med. 332, 1118–1124.

    Article  PubMed  CAS  Google Scholar 

  4. Piccini, P., Brooks, D. J., Bjorklund, A., Gunn, R. N., Grasby, P. M., et al. (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat. Neurosci. 2, 1137–1140.

    Article  PubMed  CAS  Google Scholar 

  5. Freed, C. R., Greene, P. E., Breeze, R. E., Tsai, W.-Y., DuMouchel, W., Kao, R., et al. (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 344 (10), 710–719.

    Article  PubMed  CAS  Google Scholar 

  6. Brustle, O., Jones, K., Learish, R., Karram, K., Choudhary, K., et al. (1999) Embryonic stem cell-derived glial precursors: a source of myelinated transplants. Science 285, 754–756.

    Article  PubMed  CAS  Google Scholar 

  7. McDonald, J., Liu, X.-Z., Qu, Y., Liu, S., Mickey, S., et al. (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 5, 1410–1412.

    Article  PubMed  CAS  Google Scholar 

  8. Hurlbert, M. S., Gianani, R. I., Hutt, C., Freed, C. R., and Kaddis, F. G. (1999) Neural transplantation of hNT neurons for Huntington’s disease. Cell Transplant. 8 (1), 143–151.

    PubMed  CAS  Google Scholar 

  9. Nishino, H. and Borlongan, C. V. (2000) Restoration of function by neural transplantation in the ischemic brain. Prog. Brain Res. 127, 461–476.

    Article  PubMed  CAS  Google Scholar 

  10. Bjorklund, A. and Lindvall, O. (2000) Cell replacement therapies for central nervous system disorders. Nat. Neurosci. 3 (6), 537–544.

    Article  PubMed  CAS  Google Scholar 

  11. Azizi, S. A. (2000) Exploiting nonneural cells to rebuild the nervous system: from bone marrow to brain. The Neuroscientist 6 (5), 353–361.

    Article  Google Scholar 

  12. Turner, D. A. and Kearney, W. (1993) Scientific and ethical concerns in neural fetal tissue transplants. Neurosurgery 33, 1031–1037.

    Article  PubMed  CAS  Google Scholar 

  13. Rosenstein, J. M. (1995) Why do neural transplants survive? An examination of some metabolic pathophysiological considerations in neural transplantation. Exp. Neurol. 133, 1–6.

    Article  PubMed  CAS  Google Scholar 

  14. Snyder, E. (1997) The use of non-neural cells for gene delivery. Neurobiol. Dis. 4, 69–102.

    Article  PubMed  CAS  Google Scholar 

  15. Bencsics, C., Wachtel, S. R., Milstien, S., Hatakeyama, K., Becker, J. B., et al. (1996) Double transduction with GTP cyclohydrolase and tyrosine hydroxylase is necessary for spontaneous synthesis of L-DOPA by primary fibroblasts.. 1. Neurosci. 16, 4449–4456.

    CAS  Google Scholar 

  16. Horellou, R, Brundin, R, Kalen, R, Mallet, J., and Bjorklund, A. (1990) In vivo release of dopa and dopamine from genetically engineered cells grafted to the denervated rat striatum. Neuron 5, 393–402.

    Article  PubMed  CAS  Google Scholar 

  17. Ljungberg, C. M., Stern, G., and Wilkin, G. R. (1999) Survival of genetically engineered, adult derived rat astrocytes grafted into the 6-hydroxy dopamine lesioned adult rat striatum. Brain Res. 816 (1), 29–37.

    Article  PubMed  CAS  Google Scholar 

  18. Takayama, H., Ray, J., Raymon, H. K., Baird, A., Hogg, J., et al. (1995) Basic fibroblast growth factor increases dopaminergic graft survival and function in a rat model of Parkinson’s disease. Nat. Med. 1, 53–58.

    Article  PubMed  CAS  Google Scholar 

  19. Lucidi-Phillipi, C. A., Gage, F. H., Shults, C. W., Jones, K. R., Reichardt, L. F., et al. (1995) Brain-derived neurotrophic factor-transduced fibroblasts: production of BDNF and effects of grafting to the adult rat brain. J. Comp. Neurol. 354, 361–376.

    Article  PubMed  CAS  Google Scholar 

  20. Choi-Lundberg, D., Lin, Q., Chang, Y., Chiang, Y., Hay, C., et al. (1997) Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 275, 838–841.

    Article  PubMed  CAS  Google Scholar 

  21. Choi-Lundberg, D. L., et al. (1998) Behavioral and cellular protection of rat dopaminergic neurons elicited by an adenoviral vector encoding glial cell line-derived neurotrophic factor. Exp. Neurol. 154, 261–275.

    Article  PubMed  CAS  Google Scholar 

  22. Connor, B., et al. (1999) Differential effects of glial cell line-derived neurotrophic factor (GDNF) in the striatum and substantia nigra of the aged Parkinsonian rat. Gene Ther. 6, 1936–1951.

    Article  PubMed  CAS  Google Scholar 

  23. Connor, B., Kozlowski, D. A., Unnerstall, J. R., Elsworth, J. D., Tillerson, J. L., Schallert, T., et al. (2001) Glial cell line-derived neurotrophic factor (gdnf) gene delivery protects dopaminergic terminals from degeneration. Exp. Neurol. 169, 83–95.

    Article  PubMed  CAS  Google Scholar 

  24. Kawaja, M. and Gage, F. (1992) Morphological and neurochemical features of cultured primary skin fibroblasts of Fischer 344 rats following striatal implantation. J. Comp. Neurol. 317, 102–116.

    Article  PubMed  CAS  Google Scholar 

  25. Azizi, S. A., Stokes, D., Augelli, B. J., DiGirolamo, C., and Prockop, D. J. (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts. Proc. Natl. Acad. Sci. USA 95, 3908–3913.

    Article  PubMed  CAS  Google Scholar 

  26. Prockop, D. (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74.

    Article  PubMed  CAS  Google Scholar 

  27. Cohnheim, J. (1867) Arch. Pathol. Anat. Physiol. Clin. Med. 40, 1.

    Article  Google Scholar 

  28. Friedenstein, A. J., Gorskaja, U., and Kulaagina, N. N. (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 4, 267–274.

    PubMed  CAS  Google Scholar 

  29. Pittenger, M., Mackay, A., Beck, S., Jaiswal, R., Douglas, R., et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.

    Article  PubMed  CAS  Google Scholar 

  30. Periera, R. F., O’Hara, M. D., Laptev, A. V., Halford, K. W., Pollard, M. D., et al. (1998) Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc. Natl. Acad. Sci. USA 95, 1142–1147.

    Article  Google Scholar 

  31. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., and McKercher, S. R. (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290 (5497), 1779–1782.

    Article  PubMed  CAS  Google Scholar 

  32. Brazelton, T. R., Rossi, F. M., Keshet, G. I., and Blau, H. M. (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290 (5497), 1775–1779.

    Article  PubMed  CAS  Google Scholar 

  33. Ferrari, G., Cusella-DeAngelis, C., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G., et al. (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530.

    Article  PubMed  CAS  Google Scholar 

  34. Gussoni, E., Soneoka, Y., Strickland, C., Buzney, E., Khan, M., et al. (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394.

    PubMed  CAS  Google Scholar 

  35. Galpern, W. R., Burns, L. H., Deacon, T. W., Dinsmore, J., and Isacson, O. (1996) Xenotransplantation of porcine fetal ventral mesencephalon in a rat model of Parkinson’s disease: functional recovery and graft morphology. Exp. Neurol. 140, 1–13.

    Article  PubMed  CAS  Google Scholar 

  36. Brook, F. A. and Gardner, R. L. (1997) The origin and efficient derivation of embryonic stem cells in the mouse. Proc. Natl. Acad. Sci. USA 94 (11), 5709–5712.

    Article  PubMed  CAS  Google Scholar 

  37. Laywell, E. D., Kukekov, V. G., and Steindler, D. A. Multipotent neurospheres can be derived from forebrain subependymal zone and spinal cord of adult mice after protracted postmortem intervals. Exp. Neurol. 156(2), 430–433.

    Google Scholar 

  38. Colter, D., Class, R., DiGirolamo, C., and Prockop, D. (2000) Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc. Natl. Acad. Sci. USA 97, 2313–3218.

    Article  Google Scholar 

  39. Ginns, E. I., Rehavi, M., Martin, B. M., Weller, M., O’Malley, K. L., et al. (1998) Expression of human tyrosine hydroxylase cDNA in invertebrate cells using a baculovirus vector. J. Biol. Chem. 263 (15), 7406–7410.

    Google Scholar 

  40. Miller, A. D. and Rosman, G. J. (1989) Improved retroviral vectors for gene transfer and expression. Biotechniques 7(9), 980–982, 984–986, 989–990.

    PubMed  CAS  Google Scholar 

  41. Hatakeyama, K., Inoue, Y., Harada, T., and Kagamiyama, H. (1991) Cloning and sequencing of cDNA encoding rat GTP cyclohydrolase I. The first enzyme of the tetrahydrobiopterin biosynthetic pathway. J. Biol. Chem. 266 (2), 765–769.

    PubMed  CAS  Google Scholar 

  42. Schwarz, E. J., Guillermo, A. M., Prockop, D. J., and Azizi, S. A. (1999) Multipotential marrow stromal cells transduced to produce L-DOPA: engraft-ment in a rat model of Parkinson’s disease. Hum. Gene Ther. 10, 2539–2549.

    Article  PubMed  CAS  Google Scholar 

  43. Snyder, E. (1998) Neural stem-like cells: developmental lessons with therapeutic potential. The Neuroscientist 4, 408–425.

    Article  Google Scholar 

  44. Snyder, E., Yoon, C., Flax, J., and Macklis, J. (1997) Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc. Natl. Acad. Sci. USA 94, 11,663–11, 668.

    CAS  Google Scholar 

  45. Yandava, B., Billinghurst, L., and Snyder, E. (1999) “Global” cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc. Natl. Acad. Sci. USA 96, 7029–7034.

    Article  PubMed  CAS  Google Scholar 

  46. Eriksson, P., Perfilieva, E., Bjork-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A., et al. (1998) Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313.

    Article  PubMed  CAS  Google Scholar 

  47. Gould, E., Reeves, A., Graziano, S., and Gross, C. (1999) Neurogenesis in the neocortex of adult primates. Science 286, 548–552.

    Article  PubMed  CAS  Google Scholar 

  48. Nudo, R. J., Wise, B. M., SiFuentes, F., and Milliken, G. W. (1996) Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272, 1791–1794.

    Article  PubMed  CAS  Google Scholar 

  49. Zhang, S.-C., Ge, B., and Duncan, I. (1999) Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc. Natl. Acad. Sci. USA 96, 4089–4094.

    Article  PubMed  CAS  Google Scholar 

  50. Nait-Oumesmar, B., Decker, L., Lachapelle, F., Avellana-Adalid, V., Bachelin, C., et al. (1999) Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur. J. Neurosci. 11, 4357–4366.

    Article  PubMed  CAS  Google Scholar 

  51. Snyder, E., Yandava, B., Pan, Z., Yoon, C., and Macklis, J. (1993) Immortalized postnatally-derived cerebellar progenitors can engraft and participate in development of multiple structures at multiple stages along mouse neuroaxis. Soc. Neurosci. Abstr. 19, 613.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Azizi, S.A., Schwarz, E.J., Prockop, D., Alexander, G., Mortati, K.A., Krynska, B. (2003). Utilization of Marrow Stromal Cells for Gene Transfer into the CNS. In: Zigova, T., Snyder, E.Y., Sanberg, P.R. (eds) Neural Stem Cells for Brain and Spinal Cord Repair. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-298-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-298-2_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-298-8

  • Online ISBN: 978-1-59259-298-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics