Skip to main content

Development of Lentiviral Vectors for Targeted Integration and Protein Delivery

  • Protocol
  • First Online:
Lentiviral Vectors and Exosomes as Gene and Protein Delivery Tools

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1448))

  • 3699 Accesses

Abstract

The method in this chapter describes the design of human immunodeficiency virus type 1 (HIV-1) integrase (IN)-fusion proteins which we have developed to transport different proteins into the nuclei of lentiviral vector (LV)-transduced cells. The IN-fusion protein cDNA is incorporated into the LV packaging plasmid, which leads to its incorporation into vector particles as part of a large Gag–Pol polyprotein. This specific feature of protein packaging enables also the incorporation of cytotoxic and proapoptotic proteins, such as frequently cutting endonucleases and P53. The vectors can hence be used for various protein transduction needs. An outline of the necessary methods is also given to study the functionality of a chosen IN-fusion protein in a cell culture assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goff SP (2007) Retroviridae: the retroviruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1999–2069

    Google Scholar 

  2. Freed EO, Martin MA (2007) HIVs and their replication. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 2107–2186

    Google Scholar 

  3. Schröder ARW, Shinn P, Chen H et al (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521–529

    Article  PubMed  Google Scholar 

  4. Wang GP, Ciuffi A, Leipzig J et al (2007) HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res 17:1186–1194. doi:10.1101/gr.6286907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berry C, Hannenhalli S, Leipzig J, Bushman FD (2006) Selection of target sites for mobile DNA integration in the human genome. PLoS Comput Biol 2:e157. doi:10.1371/journal.pcbi.0020157

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sadelain M, Papapetrou EP, Bushman FD (2011) Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer 12:51–58. doi:10.1038/nrc3179

    PubMed  Google Scholar 

  7. Gijsbers R, Ronen K, Vets S et al (2010) LEDGF hybrids efficiently retarget lentiviral integration into heterochromatin. Mol Ther 18:552–560. doi:10.1038/mt.2010.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferris AL, Wu X, Hughes CM et al (2010) Lens epithelium-derived growth factor fusion proteins redirect HIV-1 DNA integration. Proc Natl Acad Sci U S A 107:3135–3140. doi:10.1073/pnas.0914142107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Silvers RM, Smith JA, Schowalter M et al (2010) Modification of integration site preferences of an HIV-1-based vector by expression of a novel synthetic protein. Hum Gene Ther 21:337–349. doi:10.1089/hum.2009.134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schenkwein D, Turkki V, Ahlroth MK et al (2013) rDNA-directed integration by an HIV-1 integrase-I-PpoI fusion protein. Nucleic Acids Res 41:e61. doi:10.1093/nar/gks1438

    Article  CAS  PubMed  Google Scholar 

  11. Bushman FD (1994) Tethering human immunodeficiency virus 1 integrase to a DNA site directs integration to nearby sequences. Proc Natl Acad Sci U S A 91:9233–9237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bushman FD, Miller M (1997) Tethering human immunodeficiency virus type 1 preintegration complexes to target DNA promotes integration at nearby sites. J Virol 71:458–464

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schenkwein D, Turkki V, Kärkkäinen H-R et al (2010) Production of HIV-1 integrase fusion protein-carrying lentiviral vectors for gene therapy and protein transduction. Hum Gene Ther 21:589–602

    Article  CAS  PubMed  Google Scholar 

  14. Dull T, Zufferey R, Kelly M et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zufferey R, Dull T, Mandel RJ et al (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kulkosky J, Jones KS, Katz RA et al (1992) Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol Cell Biol 12:2331–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Follenzi A, Naldini L (2002) Generation of HIV-1 derived lentiviral vectors. Methods Enzymol 346:454–465

    Article  CAS  PubMed  Google Scholar 

  18. Follenzi A, Naldini L (2002) HIV-based vectors. Preparation and use. Methods Mol Med 69:259–274

    CAS  PubMed  Google Scholar 

  19. Tiscornia G, Singer O, Verma IM (2006) Production and purification of lentiviral vectors. Nat Protoc 1:241–245. doi:10.1038/nprot.2006.37

    Article  CAS  PubMed  Google Scholar 

  20. Schmidt M, Schwarzwaelder K, Bartholomae C et al (2007) High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). Nat Methods 4:1051–1057. doi:10.1038/nmeth1103

    Article  CAS  PubMed  Google Scholar 

  21. Kustikova OS, Baum C, Fehse B (2008) Retroviral integration site analysis in hematopoietic stem cells. Methods Mol Biol 430:255–267. doi:10.1007/978-1-59745-182-6_18

    Article  CAS  PubMed  Google Scholar 

  22. Harkey MA, Kaul R, Jacobs MA et al (2007) Multiarm high-throughput integration site detection: limitations of LAM-PCR technology and optimization for clonal analysis. Stem Cells Dev 16:381–392. doi:10.1089/scd.2007.0015

    Article  CAS  PubMed  Google Scholar 

  23. Gabriel R, Eckenberg R, Paruzynski A et al (2009) Comprehensive genomic access to vector integration in clinical gene therapy. Nat Med 15:1431–1436. doi:10.1038/nm.2057

    Article  CAS  PubMed  Google Scholar 

  24. Paruzynski A, Arens A, Gabriel R et al (2010) Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing. Nat Protoc 5:1379–1395. doi:10.1038/nprot.2010.87

    Article  CAS  PubMed  Google Scholar 

  25. Brady T, Roth SL, Malani N et al (2011) A method to sequence and quantify DNA integration for monitoring outcome in gene therapy. Nucleic Acids Res 39:e72. doi:10.1093/nar/gkr140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pule MA, Rousseau A, Vera J et al (2008) Flanking-sequence exponential anchored-polymerase chain reaction amplification: a sensitive and highly specific method for detecting retroviral integrant-host-junction sequences. Cytotherapy 10:526–539. doi:10.1080/14653240802192636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gillet NA, Malani N, Melamed A et al (2011) The host genomic environment of the provirus determines the abundance of HTLV-1-infected T-cell clones. Blood 117:3113–3122. doi:10.1182/blood-2010-10-312926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Firouzi S, López Y, Suzuki Y et al (2014) Development and validation of a new high-throughput method to investigate the clonality of HTLV-1-infected cells based on provirus integration sites. Genome Med 6:46. doi:10.1186/gm568

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Finnish Academy, ERC, the Sigrid Juselius Foundation, the Eemil Aaltonen Foundation, the Instrumentarium Science Foundation, and the Ella and Georg Ehrnrooth Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seppo Ylä-Herttuala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schenkwein, D., Ylä-Herttuala, S. (2016). Development of Lentiviral Vectors for Targeted Integration and Protein Delivery. In: Federico, M. (eds) Lentiviral Vectors and Exosomes as Gene and Protein Delivery Tools. Methods in Molecular Biology, vol 1448. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3753-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3753-0_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3751-6

  • Online ISBN: 978-1-4939-3753-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics