Skip to main content

Lyophilization of Therapeutic Proteins in Vials: Process Scale-Up and Advances in Quality by Design

  • Chapter
  • First Online:
Lyophilized Biologics and Vaccines

Abstract

The quality-by-design (QbD) approach enables the robust development of the lyophilization cycle in an effective manner where deep understanding is gained through building a scalable freezing step in terms of ice nucleation along with the generation of a primary drying design space. Applying QbD to the design of the cycle allows for the consideration of scalability up front, removing the traditional “trial-and-error” approach, while understanding the performance of the large-scale freeze-dryer. To achieve this, the heat transfer coefficient (K v) of the vial and the product cake resistance (R p) are needed for the mathematical modeling in order to obtain an accurate design space. This chapter explores the latest development and scale-up of the lyophilization process for protein therapeutics in the vial using a QbD approach. Ice nucleation, heat and mass transfer, lyophilization cycle design, and scalability are discussed. A case study is presented for a protein product using both theoretical modeling and experimental scale-down model approach to obtain a wide design space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awotwe-Otoo D, Agarabi C, Wu GK, Casey E, Read E, Lute S, Brorson KA, Khan MA, Shah RB. Quality by design: impact of formulation variables and their interactions on quality attributes of a lyophilized monoclonal antibody. Int J Pharm. 2012;438(1):167–75.

    Article  CAS  PubMed  Google Scholar 

  2. Barresi AA, Pisano R, Rasetto V, Fissore D, Marchisio DL. Model-based monitoring and control of industrial freeze-drying processes: effect of batch nonuniformity. Drying Technology. 2010;28(5):577–90.

    Article  CAS  Google Scholar 

  3. Bogner RH, Pikal MJ. The incredible shrinking design space: using risk tolerance to define design space for primary drying. Paper presented at the Freeze-Drying of Pharmaceuticals and Biologicals Conference, Garmisch-Partenkirchen, Germany, September 28-October 1; 2010.

    Google Scholar 

  4. Brower J. Nucleation by ice fog and TEMPRIS®. Paper presented at the Lyo Summit, Rottach-Egern, Germany, 18–20 September; 2013.

    Google Scholar 

  5. Carpenter JF, Pikal MJ, Chang BS, Randolph TW. Rational design of stable lyophilized protein formulations: some practical advice. Pharm Res. 1997;14(8):969–75.

    Article  CAS  PubMed  Google Scholar 

  6. Colandene JD, Maldonado LM, Creagh AT, Vrettos JS, Goad KG, Spitznagel T. Lyophilization cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent. J Pharm Sci. 2007;96(6):1598–608. doi:10.1002/jps.2812

    Article  CAS  PubMed  Google Scholar 

  7. Food and Drug Administration. Q9 Quality risk management (http://www.fda.gov/downloads/Drugs/…/Guidances/ucm073511.pdf) (2006). Accessed 8 Oct 2013.

  8. Food and Drug Administration. Guidance for industry and review staff: target product profile-a strategic development process tool. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm080593.pdf (2007). Accessed 8 Oct 2013.

  9. Food and Drug Administration. Q8 (R1) Pharmaceutical Development. (http://www.fda.gov/downloads/RegulatoryInformation/Guidances/ucm128005.pdf). Accessed 8 Oct 2013. (http://www.fda.gov/downloads/RegulatoryInformation/Guidances/ucm128005.pdf) (2008). Accessed 8 Oct 2013.

  10. Food and Drug Administration. Q10 Pharmaceutical quality systems (http://www.fda.gov/downloads/Drugs/Guidances/ucm073517.pdf) (2009). Accessed 8 Oct 2013.

  11. Ganguly A, Nail SL, Alexeenko A. Experimental determination of the key heat transfer mechanisms in pharmaceutical freeze-drying. J Pharm Sci. 2013;102(5):1610–25.

    Article  CAS  PubMed  Google Scholar 

  12. Gatlin LA, Nail SL. Protein purification process engineering. Freeze drying: a practical overview. Bioprocess Technol. 1994;18:317–67.

    CAS  PubMed  Google Scholar 

  13. Giordano A, Barresi AA, Fissore D. On the use of mathematical models to build the design space for the primary drying phase of a pharmaceutical lyophilization process. J Pharm Sci. 2011;100(1):311–24.

    Article  CAS  PubMed  Google Scholar 

  14. Jameel F, Khan M. Quality-by-design as applied to the development and manufacturing of a lyophilized protein product. Am Pharm Rev. 2009;20–4.

    Google Scholar 

  15. Kasper JC, Friess W. The freezing step in lyophilization: physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur J Pharm Biopharm. 2011;78(2):248–63.

    Article  CAS  PubMed  Google Scholar 

  16. Konstantinidis AK, Kuu W, Otten L, Nail SL, Sever RR. Controlled nucleation in freeze-drying: Effects on pore size in the dried product layer, mass transfer resistance, and primary drying rate. J Pharm Sci. 2011;100(8):3453–70.

    Article  CAS  PubMed  Google Scholar 

  17. Kramer M, Sennhenn B, Lee G. Freeze-drying using vacuum-induced surface freezing. J Pharm Sci. 2002;91(2):433–43.

    Article  CAS  PubMed  Google Scholar 

  18. Kuu WY, Nail SL. Rapid freeze-drying cycle optimization using computer programs developed based on heat and mass transfer models and facilitated by tunable diode laser absorption spectroscopy (TDLAS). J Pharm Sci. 2009a;98:3469–82.

    Article  CAS  PubMed  Google Scholar 

  19. Kuu WY, Nail SL. Rapid freeze-drying cycle optimization using computer programs developed based on heat and mass transfer models and facilitated by tunable diode laser absorption spectroscopy (TDLAS). J Pharm Sci. 2009b;98(9):3469–82.

    Article  CAS  PubMed  Google Scholar 

  20. Kuu WY, Nail SL, Sacha G. Rapid determination of vial heat transfer parameters using tunable diode laser absorption spectroscopy (TDLAS) in response to step-changes in pressure set-point during freeze-drying. J Pharm Sci. 2009;98(3):1136–54.

    Article  CAS  PubMed  Google Scholar 

  21. Kuu WY, Obryan KR, Hardwick LM, Paul TW. Product mass transfer resistance directly determined during freeze-drying cycle runs using tunable diode laser absorption spectroscopy (TDLAS) and pore diffusion model. Pharm Dev Technol. 2011;16(4):343–57.

    Article  CAS  PubMed  Google Scholar 

  22. Mockus LN, Paul TW, Pease NA, Harper NJ, Basu PK, Oslos EA, Sacha GA, Kuu WY, Hardwick LM, Karty JJ, Pikal MJ, Hee E, Khan MA, Nail SL. Quality by design in formulation and process development for a freeze-dried, small molecule parenteral product: a case study. Pharm Dev Technol. 2011;16(6):549–76.

    Article  CAS  PubMed  Google Scholar 

  23. Mujat M, Greco K, Galbally-Kinney KL, Hammer DX, Ferguson RD, Iftimia N, Mulhall P, Sharma P, Pikal MJ, Kessler WJ. Optical coherence tomography-based freeze-drying microscopy. Biomed Opt Express. 2012;3(1):55.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Overcashier DE, Patapoff TW, Hsu CC. Lyophilization of protein formulations in vials: Investigation of the relationship between resistance to vapor flow during primary drying and small-scale product collapse. J Pharm Sci 1999;88(7):688–95.

    Article  CAS  PubMed  Google Scholar 

  25. Passot S, Fonseca F, Barbouche N, Marin M, Alarcon-Lorca M, Rolland D, Rapaud M. Effect of product temperature during primary drying on the long-term stability of lyophilized proteins. Pharm Dev Technol. 2007;12(6):543–553.

    Article  CAS  PubMed  Google Scholar 

  26. Patel SM, Pikal MJ. Lyophilization process design space. J Pharm Sci. 2013;102(11):3883–87.

    Article  CAS  PubMed  Google Scholar 

  27. Patel SM, Bhugra C, Pikal MJ. Reduced pressure ice fog technique for controlled ice nucleation during freeze-drying. AAPS Pharmscitech. 2009;10(4):1406–11. doi:10.1208/s12249-009-9338-7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Patel SM, Chaudhuri S, Pikal MJ. Choked flow and importance of Mach I in freeze-drying process design. Chem Eng Sci. 2010a;65:5716–27.

    Article  CAS  Google Scholar 

  29. Patel SM, Doen T, Pikal MJ. Determination of end point of primary drying in freeze-drying process control. AAPS PharmSciTech. 2010b;11(1):73–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Patel SM, Jameel F, Pikal MJ. The effect of dryer load on freeze drying process design. J Pharm Sci. 2010c;99(10):4363–79.

    Article  CAS  PubMed  Google Scholar 

  31. Pikal MJ. Use of laboratory data in freeze drying process design: heat and mass transfer coefficients and the computer simulation of freeze drying. J Parenter Sci Technol. 1985;39(3):115–39.

    CAS  PubMed  Google Scholar 

  32. Pikal MJ Freeze drying. In: Swarbick J, Boylan B, editors. Encyclopedia of pharmaceutical technology. New York: Marcel Dekker; 2002. pp 1299–1326.

    Google Scholar 

  33. Pikal MJ. Mechanisms of protein stabilization during freeze-drying and storage: the relative importance of thermodynamic stabilization and glassy state relaxation dynamics. Drugs Pharm Sci. 2004;137(Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products):63–107.

    CAS  Google Scholar 

  34. Pikal MJ, Shah S, Senior D, Lang JE. Physical chemistry of freeze-drying: measurement of sublimation rates for frozen aqueous solutions by a microbalance technique. J Pharm Sci. 1983;72(6):635–50.

    Article  CAS  PubMed  Google Scholar 

  35. Pikal MJ, Roy ML, Shah S. Mass and heat transfer in vial freeze-drying of pharmaceuticals: role of the vial. J Pharm Sci FIELD. 1984;73(9):1224–37.

    Article  CAS  Google Scholar 

  36. Pikal MJ, Shah S, Roy ML, Putman R. The secondary drying stage of freeze drying: drying kinetics as a function of temperature and chamber pressure. Int J Pharm. 1990;60(3):203–17.

    Article  CAS  Google Scholar 

  37. Pikal MJ, Rambhatla S, Ramot R. The impact of the freezing stage in lyophilization: effects of the ice nucleation temperature on process design and product quality. Am Pharm Rev. 2002;5(3):48–52.

    Google Scholar 

  38. Pikal MJ, Cardon S, Bhugra C, Jameel F, Rambhatla S, Mascarenhas WJ, Akay HU. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications. Pharm DevTechnol. 2005;10(1):17–32.

    CAS  Google Scholar 

  39. Rambhatla S, Pikal MJ. Heat and mass transfer scale-up issues during freeze-drying, I: a typical radiation and the edge vial effect. AAPS PharmSciTech. 2003;4(2):111–20.

    Article  CAS  Google Scholar 

  40. Rambhatla S, Ramot R, Bhugra C, Pikal MJ. Heat and mass transfer scale-up issues during freeze drying: II. Control and characterization of the degree of supercooling. AAPS Pharmscitech. 2004a;5(4):e58.

    Article  PubMed  Google Scholar 

  41. Rambhatla S, Ramot R, Bhugra C, Pikal MJ. Heat and mass transfer scale-up issues during freeze drying: II. Control and characterization of the degree of supercooling. AAPS PharmSciTech. 2004b;5(4):e58.

    Article  PubMed  Google Scholar 

  42. Rambhatla S, Tchessalov S, Pikal MJ. Heat and mass transfer scale-up issues during freeze-drying, III: control and characterization of dryer differences via operational qualification tests. AAPS PharmScitech. 2006;7(2):E39.

    Article  CAS  PubMed  Google Scholar 

  43. Rathore A, Krishnan R, Tozer S, Smiley D, Rausch S, Seely J. Scaling down of biopharmaceutical unit operations-PartI: fermentation. BioPharm Int. 2005a;18(3):60–68.

    Google Scholar 

  44. Rathore AS, Krishnan R, Tozer S, Smiley D, Rausch S, Seely JE. Scaling down of biopharmaceutical unit operations-Part 2: chromatography and filtration. Biopharm Int. 2005b;18(4):58–64.

    Google Scholar 

  45. Royall PG, Craig DQM, Doherty C. Characterization of the glass transition of an amorphous drug using modulated DSC. Pharm Res. 1998;15(7):1117–21.

    Article  CAS  PubMed  Google Scholar 

  46. Schersch K, Betz O, Garidel P, Muehlau S, Bassarab S, Winter G. Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins i: stability after freeze-drying. J Pharm Sci. 2010;99(5):2256–78. doi:10.1002/jps.22000.

    Article  CAS  PubMed  Google Scholar 

  47. Searles JA, Carpenter JF, Randolph TW. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine T-g’ in pharmaceutical lyophilization. J Pharm Sci. 2001a;90(7):872–87.

    Article  CAS  PubMed  Google Scholar 

  48. Searles JA, Carpenter JF, Randolph TW. The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf. J Pharm Sci. 2001b;90(7):860–71.

    Article  CAS  PubMed  Google Scholar 

  49. Shon M. ControLyo nucleation on-demand technology “moving from lab to production”. Paper presented at the Lyo Summit, Rottach-Egern, Germany, 18–20 September; 2013.

    Google Scholar 

  50. Tang X, Pikal MJ. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res. 2004;21(2):191–200.

    Article  CAS  PubMed  Google Scholar 

  51. Tang X, Nail SL, Pikal MJ. Freeze-drying process design by manometric temperature measurement: design of a smart freeze-dryer. Pharm Res. 2005;22(4):685–700.

    Article  CAS  PubMed  Google Scholar 

  52. Tang XLC, Nail SL, Pikal MJ. Evaluation of manometric temperature measurement (MTM), a process analytical technology tool in freeze drying, Part III: heat and mass transfer measurement. AAPS PharmSciTech. 2006;7(4):97.

    PubMed  Google Scholar 

  53. Wang DQ, Hey JM, Nail SL. Effect of collapse on the stability of freeze-dried recombinant factor VIII and alpha-amylase. J Pharm Sci. 2004;93(5):1253–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Arun Jangda (Genzyme, Framingham) for the small-scale lyophilization data and George Gregory (Genzyme, Waterford) for the heat transfer data. The authors would also like to thank Mark Yang, PhD and the Genzyme Late Stage Process Development group located at Framingham, MA; Martin Addo, PhD and the Genzyme Technical Development (MS&T) group located at Waterford, Ireland. The authors would like to thank Jean-Rene Authelin of Sanofi R&D for his input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingquan (Stuart) Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, B., McCoy, T., Pikal, M., Varshney, D. (2015). Lyophilization of Therapeutic Proteins in Vials: Process Scale-Up and Advances in Quality by Design. In: Varshney, D., Singh, M. (eds) Lyophilized Biologics and Vaccines. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2383-0_7

Download citation

Publish with us

Policies and ethics