Skip to main content

Studying Glycosaminoglycan–Protein Interactions Using Capillary Electrophoresis

  • Protocol
  • First Online:
Glycosaminoglycans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1229))

Abstract

Methods for studying interactions between glycosaminoglycans (GAGs) and proteins have assumed considerable significance as their biological importance increases. Capillary electrophoresis (CE) is a powerful method to study these interactions due to its speed, high efficiency, and low sample/reagent consumption. In addition, CE works effectively under a wide range of physiologically relevant conditions. This chapter presents state-of-the-art on CE methods for studying GAG–protein interactions including affinity capillary electrophoresis (ACE), capillary zone electrophoresis (CZE), frontal analysis (FA)/frontal analysis continuous capillary electrophoresis (FACCE), and capillary electrokinetic chromatography (CEC) with detailed experimental protocols for ACE and CZE methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mulloy B, Linhardt RJ (2001) Order out of complexity—protein structures that interact with heparin. Curr Opin Struct Biol 11: 623–628

    Article  CAS  PubMed  Google Scholar 

  2. Yamada S, Sakamoto K, Tsuda H, Yoshida K, Sugiura M, Sugahara K (1999) Structural studies of octasaccharides derived from the low-sulfated repeating disaccharide region and octasaccharide serines derived from the protein linkage region of porcine intestinal heparin. Biochemistry 38:838–847

    Article  CAS  PubMed  Google Scholar 

  3. Jiao QC, Liu Q, Sun C, He H (1999) Investigation on the binding site in heparin by spectrophotometry. Talanta 48:1095–1101

    Article  CAS  PubMed  Google Scholar 

  4. Gallagher JT, Lyon M (2000) Heparan sulfate (molecular structure and interactions with growth factors and morphogens). In: Lozzo RV (ed) Proteoglycans (structure, biology, and molecular interactions). Marcel Dekker, Inc., New York, NY, pp 27–60

    Google Scholar 

  5. Whitelock JM, Iozzo RV (2005) Heparan sulfate: a complex polymer charged with biological activity. Chem Rev 105:2745–2764

    Article  CAS  PubMed  Google Scholar 

  6. Dong J, Peters-Libeu CA, Weisgraber KH, Segelke BW, Rupp B, Capila I, Hernaiz MJ, LeBrun LA, Linhardt RJ (2001) Interaction of the N-terminal domain of apolipoprotein E4 with heparin. Biochemistry 40:2826–2834

    Article  CAS  PubMed  Google Scholar 

  7. Fromm JR, Hileman RE, Caldwell EEO, Weiler JM, Linhardt RJ (1995) Differences in the interaction of heparin with arginine and lysine and the importance of these basic-amino-acids in the binding of heparin to acidic fibroblast growth-factor. Arch Biochem Biophys 323: 279–287

    Article  CAS  PubMed  Google Scholar 

  8. Heegaard NHH, De Lorenzi E (2005) Interactions of charged ligands with beta (2)-microglobulin conformers in affinity capillary electrophoresis. Biochim Biophys Acta 1753:131–140

    Article  CAS  PubMed  Google Scholar 

  9. Heegaard NHH (1998) Capillary electrophoresis for the study of affinity interactions. J Mol Recognit 11:141–148

    Article  CAS  PubMed  Google Scholar 

  10. Heegaard NHH, Mortensen HD, Roepstorff P (1995) Demonstration of a heparin-binding site in serum amyloid-P component using affinity capillary electrophoresis as an adjunct technique. J Chromatogr A 717:83–90

    Article  CAS  PubMed  Google Scholar 

  11. Heegaard NHH (1999) Microscale characterization of the structure-activity relationship of a heparin-binding glycopeptide using affinity capillary electrophoresis and immobilized enzymes. J Chromatogr A 853:189–195

    Article  CAS  PubMed  Google Scholar 

  12. Heegaard NHH, Heegaard PMH, Roepstorff P, Robey FA (1996) Ligand-binding sites in human serum amyloid P component. Eur J Biochem 239:850–856

    Article  CAS  PubMed  Google Scholar 

  13. Heegaard NHH (1998) A heparin-binding peptide from human serum amyloid P component characterized by affinity capillary electrophoresis. Electrophoresis 19:442–447

    Article  CAS  PubMed  Google Scholar 

  14. Bohlin ME, Kogutowska E, Blomberg LG, Heegaard NHH (2004) Capillary electrophoresis- based analysis of phospholipid and glycosaminoglycan binding by human beta(2)-glycoprotein. J Chromatogr A 1059:215–222

    Article  CAS  PubMed  Google Scholar 

  15. Gunnarsson K, Valtcheva L, Hjerten S (1997) Capillary zone electrophoresis for the study of the binding of antithrombin to low-affinity heparin. Glycoconj J 14:859–862

    Article  CAS  PubMed  Google Scholar 

  16. Heegaard NHH, Nilsson S, Guzman NA (1998) Affinity capillary electrophoresis: important application areas and some recent developments. J Chromatogr B 715:29–54

    Article  CAS  Google Scholar 

  17. Heegaard NHH, Nissen MH, Chen DDY (2002) Applications of on-line weak affinity interactions in free solution capillary electrophoresis. Electrophoresis 23:815–822

    Article  CAS  PubMed  Google Scholar 

  18. McKeon J, Holland LA (2004) Determination of dissociation constants for a heparin-binding domain of amyloid precursor protein and heparins or heparan sulfate by affinity capillary electrophoresis. Electrophoresis 25:1243–1248

    Article  CAS  PubMed  Google Scholar 

  19. Liu JP, Abid S, Hail ME, Lee MS, Hangeland J, Zein N (1998) Use of affinity capillary electrophoresis for the study of protein and drug interactions. Analyst 123:1455–1459

    Article  CAS  PubMed  Google Scholar 

  20. Varenne A, Gareil P, Colliec-Jouault S, Daniel R (2003) Capillary electrophoresis determination of the binding affinity of bioactive sulfated polysaccharides to proteins: study of the binding properties of fucoidan to antithrombin. Anal Biochem 315:152–159

    Article  CAS  PubMed  Google Scholar 

  21. Tissot B, Montdargent B, Chevolot L, Varenne A, Descroix S, Gareil P, Daniel R (2003) Interaction of fucoidan with the proteins of the complement classical pathway. Biochim Biophys Acta 1651:5–16

    Article  CAS  PubMed  Google Scholar 

  22. Heegaard NHH, He X, Blomberg LG (2006) Binding of Ca2+, Mg2+, and heparin by human serum amyloid P component in affinity capillary electrophoresis. Electrophoresis 27:2609–2615

    Article  CAS  PubMed  Google Scholar 

  23. Hamazaki H (1987) Ca2+ mediated association of human-serum amyloid-P component with heparan-sulfate and dermatan-sulfate. J Biol Chem 262:1456–1460

    CAS  PubMed  Google Scholar 

  24. Li XA, Hatanaka K, Guo L, Kitamura Y, Yamamoto A (1994) Binding of serum amyloid-P component to heparin in human serum. Biochim Biophys Acta 1201:143–148

    Article  CAS  PubMed  Google Scholar 

  25. Heegaard NHH, Hansen SI, Holm J (2006) A novel specific heparin-binding activity of bovine folate-binding protein characterized by capillary electrophoresis. Electrophoresis 27: 1122–1127

    Article  CAS  PubMed  Google Scholar 

  26. Liang A, Raghuraman A, Desai UR (2009) Capillary electrophoretic study of small, highly sulfated, non-sugar molecules interacting with antithrombin. Electrophoresis 30:1544–1551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Anderot M, Nilsson M, Vegvari A, Moeller EH, Weert M, Isaksson R (2009) Determination of dissociation constants between polyelectrolytes and proteins by affinity capillary electrophoresis. J Chromatogr B 877:892–896

    Article  CAS  Google Scholar 

  28. Kinoshita M, Kakehi K (2005) Analysis of the interaction between hyaluronan and hyaluronan-binding proteins by capillary affinity electrophoresis: significance of hyaluronan molecular size on binding reaction. J Chromatogr B 816: 289–295

    Article  CAS  Google Scholar 

  29. Gotti R, Parma B, Spelta F, Liverani L (2013) Affinity capillary electrophoresis in binding study of antithrombin to heparin from different sources. Talanta 105:366–371

    Article  CAS  PubMed  Google Scholar 

  30. Heegaard NH, Roepstorff P, Melberg SG, Nissen MH (2002) Cleaved beta 2- microglobulin partially attains a conformation that has amyloidogenic features. J Biol Chem 277: 11184–11189

    Article  CAS  PubMed  Google Scholar 

  31. Dimitrellos V, Lamari FN, Militsopoulou M, Kanakis I, Karamanos NK (2003) Capillary electrophoresis and enzyme solid phase assay for examining the purity of a synthetic heparin proteoglycan-like conjugate and identifying binding to basic fibroblast growth factor. Biomed Chromatogr 17:42–47

    Article  CAS  PubMed  Google Scholar 

  32. Heegaard NHH, Robey FA (1992) Use of capillary zone electrophoresis to evaluate the binding of anionic carbohydrates to synthetic peptides derived from human serum amyloid-P component. Anal Chem 64:2479–2482

    Article  CAS  PubMed  Google Scholar 

  33. Hernaiz MJ, LeBrun LA, Wu Y, Sen JW, Linhardt RJ, Heegaard NHH (2002) Characterization of heparin binding by a peptide from amyloid P component using capillary electrophoresis, surface plasmon resonance and isothermal titration calorimetry. Eur J Biochem 269:2860–2867

    Article  CAS  PubMed  Google Scholar 

  34. Guijt-van Duijn RM, Frank J, van Dedem GWK, Baltussen E (2000) Recent advances in affinity capillary electrophoresis. Electrophoresis 21:3905–3918

    Article  CAS  PubMed  Google Scholar 

  35. Militsopoulou M, Lamari F, Karamanos NK (2003) Capillary electrophoresis: a tool for studying interactions of glycans/proteoglycans with growth factors. J Pharm Biomed Anal 32:823–828

    Article  CAS  PubMed  Google Scholar 

  36. Ling X, Liu Y, Fan H, Zhong Y, Li D, Wang Y (2007) Studies on interactions f programmed cell death 5 (PDCD5) and its related peptides with heparin by capillary zone electrophoresis. Anal Bioanal Chem 387:909–916

    Article  CAS  PubMed  Google Scholar 

  37. Liu Y, Zhang S, Ling X, Li Y, Zhang Y, Han W, Wang Y (2008) Analysis of the interactions between the peptides from secreted human CKLF1 and heparin using capillary zone electrophoresis. J Pept Sci 14:984–988

    Article  CAS  PubMed  Google Scholar 

  38. Liang A, He X, Du Y, Wang K, Fung Y, Lin B (2004) Capillary zone electrophoresis investigation of the interaction between heparin and granulocyte-colony stimulating factor. Electrophoresis 25:870–875

    Article  CAS  PubMed  Google Scholar 

  39. Liang A, He X, Du Y, Wang K, Fung Y, Lin B (2005) Capillary zone electrophoresis characterization of low molecular weight heparin binding to interleukin 2. J Pharm Biomed Anal 38:408–413

    Article  CAS  PubMed  Google Scholar 

  40. Liang A, Chao Y, Liu X, Du Y, Wang K, Qian S, Lin B (2005) Separation, identification, and interaction of heparin oligosaccharides with granulocyte-colony stimulating factor using capillary electrophoresis and mass spectrometry. Electrophoresis 26:3460–3467

    Article  CAS  PubMed  Google Scholar 

  41. Liang A, Du Y, Wang K, Lin B (2006) Quantitative investigation of interaction between granulocyte-macrophage colony-stimulating factor and heparin by capillary zone electrophoresis. J Sep Sci 29:1637–1641

    Article  CAS  PubMed  Google Scholar 

  42. Liang A, Liu X, Du Y, Wang K, Lin B (2008) Further characterization of the binding of heparin to granulocyte colony-stimulating factor: importance of sulfate groups. Electrophoresis 29:1286–1290

    Article  CAS  PubMed  Google Scholar 

  43. Liang A, Zhou X, Wang Q, Liu X, Qin J, Du Y, Wang K, Lin B (2006) Interactions of dextran sulfates with granulocyte colony-stimulating factor and their effects on leukemia cells. Electrophoresis 27:3195–3201

    Article  CAS  PubMed  Google Scholar 

  44. Liang A, Zhou X, Wang Q, Liu X, Liu X, Du Y, Wang K, Lin B (2006) Structural features in carrageenan that interact with a heparin-binding hematopoietic growth factor and modulate its biological activity. J Chromatogr B 843:114–119

    Article  CAS  Google Scholar 

  45. Lipponen K, Liu Y, Patricia WS, Oorni K, Kovanen PT, Riekkola M (2012) Capillary electrochromatography and quartz crystal microbalance, valuable techniques in the study of heparin-lipoprotein interactions. Anal Biochem 424:71–78

    Article  CAS  PubMed  Google Scholar 

  46. Wu XJ, Linhardt RJ (1998) Capillary affinity chromatography and affinity capillary electrophoresis of heparin binding proteins. Electrophoresis 19:2650–2653

    Article  CAS  PubMed  Google Scholar 

  47. VanderNoot VA, Hileman RE, Dordick JS, Linhardt RJ (1998) Affinity capillary electrophoresis employing immobilized glycosaminoglycan to resolve heparin-binding peptides. Electrophoresis 19:437–441

    Article  CAS  PubMed  Google Scholar 

  48. Hattori T, Kimura K, Seyrek E, Dubin PL (2001) Binding of bovine serum albumin to heparin determined by turbidimetric titration and frontal analysis continuous capillary electrophoresis. Anal Biochem 295:158–167

    Article  CAS  PubMed  Google Scholar 

  49. Hattori T, Kimura K, Seyrek E, Dubin PL (2001) The use of frontal analysis continuous capillary electrophoresis to compare protein binding by natural and synthetic polyelectrolyte. Anal Sci 17:93–95

    Article  Google Scholar 

  50. Saux TL, Varenne V, Perreau F, Siret L, Duteil S, Duhau L, Gareil P (2006) Determination of the binding parameters for antithrombin-heparin fragment systems by affinity and frontal analysis continuous capillary electrophoresis. J Chromatogr A 1132:289–296

    Article  PubMed  Google Scholar 

  51. Seyrek E, Dubin PL, Henriksen J (2007) Nonspecific electrostatic binding characteristics of the heparin-antithrombin interaction. Biopolymers 86:249–259

    Article  CAS  PubMed  Google Scholar 

  52. Fermas S, Gonnet F, Varenne A, Gareil P, Daniel R (2007) Frontal analysis capillary electrophoresis hyphenated to electrospray ionization mass spectrometry for the characterization of the antithrombin/heparin pentasaccharide complex. Anal Chem 79: 4987–4993

    Article  CAS  PubMed  Google Scholar 

  53. He X, Ding Y, Li D, Lin B (2004) Recent advances in the study of biomolecular interactions by capillary electrophoresis. Electrophoresis 25:697–711

    Article  CAS  PubMed  Google Scholar 

  54. Scatchard G (1949) The attraction of proteins for small molecules and ions. Ann N Y Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  55. Keyes RS, Bobst AM (1993) A comparative study of Scatchard-type and linear lattice models for the analysis of EPR competition experiments with spin-labeled nucleic acids and sin. Biophys Chem 45:281–303

    Article  CAS  PubMed  Google Scholar 

  56. Klotz IM, Hunston DL (1971) Properties of graphical representations of multiple classes of binding sites. Biochemistry 10:3065–3069

    Article  CAS  PubMed  Google Scholar 

  57. Colton IJ, Carbeck JD, Rao J, Whitesides GM (1998) Affinity capillary electrophoresis: a physical-organic tool for studying interactions in biomolecular recognition. Electrophoresis 19:367–382

    Article  CAS  PubMed  Google Scholar 

  58. Olson ST, Björk I, Sheffer R, Craig PA, Shore JD, Choay J (1992) Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement. J Biol Chem 267:12528–12538

    CAS  PubMed  Google Scholar 

  59. Desai UR, Petitou M, Björk I, Olson ST (1998) Mechanism of heparin activation of antithrombin. Role of individual residues of the pentasaccharide activating sequence in the recognition of native and activated states of antithrombin. J Biol Chem 273: 7478–7487

    Article  CAS  PubMed  Google Scholar 

  60. Gunnarsson GT, Desai UR (2002) Interaction of designed sulfated flavanoids with antithrombin: lessons on the design of organic activators. J Med Chem 45:4460–4470

    Article  CAS  PubMed  Google Scholar 

  61. Gunnarsson GT, Desai UR (2002) Designing small, nonsugar activators of antithrombin using hydropathic interaction analyses. J Med Chem 45:1233–1243

    Article  CAS  PubMed  Google Scholar 

  62. Gunnarsson GT, Riaz M, Adams J, Desai UR (2005) Synthesis of per-sulfated flavonoids using 2,2,2-trichloro ethyl protecting group and their factor Xa inhibition potential. Bioorg Med Chem 13:1783–1789

    Article  CAS  PubMed  Google Scholar 

  63. Gunnarsson GT, Desai UR (2003) Exploring new non-sugar sulfated molecules as activators of antithrombin. Bioorg Med Chem Lett 13: 579–583

    Article  Google Scholar 

  64. Raghuraman A, Riaz M, Hindle M, Desai UR (2007) Rapid and efficient microwave-assisted synthesis of highly sulfated organic scaffolds. Tetrahedron Lett 48: 6754–6758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants SC EPSCoR/IDeA and SCICU to AL and grants HL090586 and HL107152 from the National Institutes of Health to URD. We thank Ms. Yingzi Jin of VCU for helping with the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiye Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liang, A., Desai, U.R. (2015). Studying Glycosaminoglycan–Protein Interactions Using Capillary Electrophoresis. In: Balagurunathan, K., Nakato, H., Desai, U. (eds) Glycosaminoglycans. Methods in Molecular Biology, vol 1229. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1714-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1714-3_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1713-6

  • Online ISBN: 978-1-4939-1714-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics