Skip to main content

Motor Learning and Virtual Reality

  • Chapter
  • First Online:
Virtual Reality for Physical and Motor Rehabilitation

Abstract

The chapter summarizes the rationale and evidence for attributes of VR technology that target the motor learning variables of practice, augmented feedback, motivation, and observational learning. The potential for motor learning achieved with VR-based therapy to transfer and generalize to the tasks in the physical environment is discussed. Recommendations are provided for clinicians interested in emphasizing motor learning using VR-based therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamovich, S. V., August, K., Merians, A. S., & Tunik, E. (2009). A virtual reality-based system integrated with fmri to study neural mechanisms of action observation-execution: A proof of concept study. Restorative Neurology and Neuroscience, 27(3), 209–223.

    CAS  PubMed  Google Scholar 

  • Adamovich, S. V., Fluet, G. G., Tunik, E., & Merians, A. S. (2009). Sensorimotor training in virtual reality: A review. Neurorehabilitation, 25(1), 29–44.

    PubMed Central  PubMed  Google Scholar 

  • Ballester, B. R., Bermudez, I., Badia, S., & Verschure, P. (2011). The effect of social gaming in virtual reality based rehabilitation of stroke patients. International Conference on Virtual Rehabilitation, Zurich, Switzerland. Washington, DC: IEEE.

    Google Scholar 

  • Barnett, M. L., Ross, D., Schmidt, R. A., & Todd, B. (1973). Motor skills learning and the specificity of training principle. Research Quarterly, 44(4), 440–447.

    CAS  PubMed  Google Scholar 

  • Bermudez, I., Badia, S., Samaha, H., Garcia Morgade, A., & Verschure, P. F. (2011). Exploring the synergies of a hybrid BCI-VR neurorehabilitation system: Monitoring and promoting cortical reorganization through mental and motor training. International Conference on Virtual Rehabilitation, Zurich, Switzerland. Washington, DC: IEEE.

    Google Scholar 

  • Bernhardt, J., Dewey, H., Thrift, A., & Donnan, G. (2004). Inactive and alone: Physical activity within the first 14 days of acute stroke unit care. Stroke, 35(4), 1005–1009.

    Article  PubMed  Google Scholar 

  • Bossard, C., Kermarrec, G., Buche, C., & Tisseau, J. (2008). Transfer of learning in virtual environments: A new challenge? Virtual Reality, 12, 151–161.

    Article  Google Scholar 

  • Brutsch, K., Koenig, A., Zimmerli, L., Mrillat-Koeneke, S., Riener, R., Jncke, L., et al. (2011). Virtual reality for enhancement of robot-assisted gait training in children with central gait disorders. Journal of Rehabilitation Medicine, 43(6), 493–499.

    Article  PubMed  Google Scholar 

  • Bryanton, C., Bosse, J., Brien, M., McLean, J., McCormick, A., & Sveistrup, H. (2006). Feasibility, motivation, and selective motor control: Virtual reality compared to conventional home exercise in children with cerebral palsy. Cyberpsychology & Behavior, 9(2), 123–128.

    Article  CAS  Google Scholar 

  • Buccino, G., Solodkin, A., & Small, S. L. (2006). Functions of the mirror neuron system: Implications for neurorehabilitation. Cognitive and Behavioral Neurology, 19, 55–63.

    Article  PubMed  Google Scholar 

  • Cameirao, M. S., Badia, S. B., Oller, E. D., & Verschure, P. F. (2010). Neurorehabilitation using the virtual reality based rehabilitation gaming system: Methodology, design, psychometrics, usability and validation. Journal of Neuroengineering & Rehabilitation, 7, 48.

    Article  Google Scholar 

  • Cirstea, M. C., Ptito, A., & Levin, M. F. (2003). Arm reaching improvements with short-term practice depend on the severity of the motor deficit in stroke. Experimental Brain Research, 152(4), 476–488.

    Article  CAS  PubMed  Google Scholar 

  • Deutsch, J. E. (2009). Virtual reality and gaming systems to improve walking and mobility for people with musculoskeletal and neuromuscular conditions. Studies in Health Technology & Informatics, 145, 84–93.

    Google Scholar 

  • Deutsch, J. E., Borbely, M., Filler, J., Huhn, K., & Guarrera-Bowlby, P. (2008). Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Physical Therapy, 88(10), 1–12.

    Article  Google Scholar 

  • Deutsch, J. E., Brettler, A., Smith, C., Welsh, J., John, R., Guarrera-Bowlby, P., et al. (2011). Nintendo Wii sports and Wii fit game analysis, validation, and application to stroke rehabilitation. Topics in Stroke Rehabilitation, 18(6), 701–719.

    Article  PubMed  Google Scholar 

  • Eng, K., Siekierka, E., Pyk, P., Chevrier, E., Hauser, Y., Cameirao, M., et al. (2007). Interactive visuo-motor therapy system for stroke rehabilitation. Medical & Biological Engineering & Computing, 45(9), 901–907.

    Article  Google Scholar 

  • Feintuch, U., Raz, L., Hwang, J., Josman, N., Katz, N., Kizony, R., et al. (2006). Integrating haptic-tactile feedback into a video-capture-based virtual environment for rehabilitation. Cyberpsycology & Behavior, 9(2), 129–132.

    Article  Google Scholar 

  • Flynn, S., Palma, P., & Bender, A. (2007). Feasibility of using the Sony PlayStation 2 gaming platform for an individual poststroke: A case report. Journal of Neurologic Physical Therapy, 31(4), 180–189.

    Article  PubMed  Google Scholar 

  • Gaggioli, A., Meneghini, A., Morganti, F., Alcaniz, M., & Riva, G. (2006). A strategy for computer-assisted mental practice in stroke rehabilitation. Neurorehabilitation & Neural Repair, 20(4), 503–507.

    Article  Google Scholar 

  • Galvin, J., & Levac, D. (2011). Facilitating clinical decision-making about the use of virtual reality within paediatric motor rehabilitation: Describing and classifying virtual reality systems. Developmental Neurorehabilitation, 14(2), 112–122.

    Article  PubMed  Google Scholar 

  • Glegg, S., Holsti, L., Velikonja, D., Ansley, B., Brum, C., & Sartor, D. (2013). Factors influencing therapists’ adoption of virtual reality for brain injury rehabilitation. Journal of Cybertherapy and Rehabilitation, 16(5), 385–401.

    Google Scholar 

  • Golomb, M. R., McDonald, B. C., Warden, S. J., Yonkman, J., Saykin, A. J., Shirley, B., et al. (2010). In-home virtual reality videogame telerehabilitation in adolescents with hemilplegic cerebral palsy. Archives of Physical Medicine and Rehabilitation, 91, 1–8.

    Article  PubMed  Google Scholar 

  • Golomb, M. R., Warden, S. J., Fess, E., Rabin, B., Yonkman, J., Shirley, B., et al. (2011). Maintained hand function and forearm bone health 14 months after an in-home virtual-reality videogame hand telerehabilitation intervention in an adolescent with hemiplegic cerebral palsy. Journal of Child Neurology, 26(3), 389–393.

    Article  PubMed  Google Scholar 

  • Gordon, A. M., & Magill, R. A. (2011). Motor learning: Application of principles to pediatric rehabilitation. In S. K. Campbell (Ed.), Physical therapy for children (3rd ed., p. 157). Philadelphia, PA: Saunders.

    Google Scholar 

  • Gordon, A. M., & Okita, S. Y. (2010). Augmenting pediatric constraint-induced movement therapy and bimanual training with video gaming technology. Technology and Disability, 22, 179–191.

    Google Scholar 

  • Harris, K., & Reid, D. (2005). The influence of virtual reality play on children’s motivation. Canadian Journal of Occupational Therapy, 72, 21–29.

    Article  Google Scholar 

  • Hibbard, P. B., & Bradshaw, M. F. (2003). Reaching for virtual objects: Binocular disparity and the control of prehension. Experimental Brain Research, 148, 196–201.

    PubMed  Google Scholar 

  • Holden, M. K. (2005). Virtual environments for motor rehabilitation: Review. Cyberpsychology and Behavior, 8(3), 187–211.

    Article  PubMed  Google Scholar 

  • Holden, M. K., & Todorov, E. (2002). Use of virtual environments in motor learning and rehabilitation. In K. M. Stanney (Ed.), Handbook of virtual environments: Design, implementation, and applications (pp. 999–1026). London: Lawrence Elbraum.

    Google Scholar 

  • Holden, M., Todorov, E., Callahan, J., & Bizzi, E. (1999). Virtual environment training improves motor performance in two patients with stroke: Case report. Neurology Report, 23(2), 57–67.

    Article  Google Scholar 

  • Huber, M., Rabin, B., Docan, C., Burdea, G., Nwosu, M., Abdelbaky, M., et al. (2008). PlayStation 3-based tele-rehabilitation for children with hemiplegia. International Conference on Virtual Rehabilitation, 2008, Vancouver, BC. Washington, DC: IEEE.

    Google Scholar 

  • Jack, D., Boian, R., Merians, A. S., Tremaine, M., Burdea, G. C., Adamovich, S. V., et al. (2001). Virtual reality-enhanced stroke rehabilitation. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 9(3), 308–318.

    Article  CAS  Google Scholar 

  • Jang, S. H., You, S. H., & Hallett, M. (2005). Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: An experimenter-blind preliminary study. Archives of Physical Medicine and Rehabilitation, 86, 2218–2223.

    Article  PubMed  Google Scholar 

  • Kizony, R., Levin, M. F., Hughey, L., Perez, C., & Fung, J. (2010). Cognitive load and dual-task performance during locomotion poststroke: A feasibility study using a functional virtual environment. Physical Therapy, 90(2), 252–260.

    Article  PubMed  Google Scholar 

  • Kleim, J., & Jones, T. (2008). Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage. Journal of Speech, Language & Hearing Research, 51(1), S225–S239.

    Article  Google Scholar 

  • Koenig, A., Wellner, M., Koneke, S., Meyer-Heim, A., Lunenburger, L., & Riener, R. (2008). Virtual gait training for children with cerebral palsy using the lokomat gait orthosis. Studies in Health Technology & Informatics, 132, 204–209.

    Google Scholar 

  • Krakauer, J. W. (2006). Motor learning: Its relevance to stroke recovery and neurorehabilitation. Current Opinion in Neurology, 19(1), 84–90.

    Article  PubMed  Google Scholar 

  • Krakauer, J. W., Carmichael, S. T., Corbett, D., & Wittenberg, G. F. (2012). Getting neurorehabilitation right: What can be learned from animal models? Neurorehabilitation and Neural Repair, 26(8), 923–931.

    Article  PubMed  Google Scholar 

  • Lange, B., Koenig, S., Chang, C., McConnell, E., Suma, E., Bolas, M., et al. (2012). Designing informed game-based rehabilitation tasks leveraging advances in virtual reality. Disability and Rehabilitation, 34(22), 1863–1870.

    Article  PubMed  Google Scholar 

  • Laufer, Y., & Weiss, P. L. (2011). Virtual reality in the assessment and treatment of children with motor impairment: A systematic review. Journal of Physical Therapy Education, 25(1), 59–71.

    Google Scholar 

  • Lee, T. D., Swinnen, S. P., & Serrien, D. J. (1994). Cognitive effort and motor learning. QUEST, 46, 328–344.

    Article  Google Scholar 

  • Lehto, N. K., Marley, T. L., Ezekiel, H. J., Wishart, L. R., Lee, T. D., & Jarus, T. (2001). Application of motor learning principles: The physiotherapy client as a problem-solver. IV. Future directions. Physiotherapy Canada, 53(2), 109–114.

    Google Scholar 

  • Levac, D., & Galvin, J. (2013). When is virtual reality ‘therapy’? Archives of Physical Medicine & Rehabilitation, 94(4), 795–798. doi:10.1016/j.apmr.2012.10.021. pii: S0003-9993(12)01078-7.

    Article  Google Scholar 

  • Levac, D., Miller, P., & Missiuna, C. (2011). Usual and virtual reality video game-based physiotherapy interventions for children and youth with acquired brain injuries. Physical and Occupational Therapy in Pediatrics, 32(2), 180–195.

    Article  PubMed  Google Scholar 

  • Levac D, Missiuna C, Wishart L, DeMatteo C, Wright V. (2011). Documenting the content of physical therapy for children with acquired brain injury: Development and validation of the Motor Learning Strategy Rating Instrument. Physical Therapy, 91(5):689–99.

    Google Scholar 

  • Levin, M. F. (2011). Can virtual reality offer enriched environments for rehabilitation? Expert Review of Neurotherapeutics, 11(2), 153–155.

    Article  PubMed  Google Scholar 

  • Lewis, G. N., & Rosie, J. A. (2012). Virtual reality games for movement rehabilitation in neurological conditions: How do we meet the needs and expectations of users? Disability & Rehabilitation, 34(22), 1880–1886.

    Article  Google Scholar 

  • Lewis, G. N., Woods, C., Rosie, J. A., & McPherson, K. M. (2011). Virtual reality games for rehabilitation of people with stroke: Perspectives from the users. Disability & Rehabilitation Assistive Technology, 6(5), 453–463.

    Article  Google Scholar 

  • Li, W., Lam-Damji, S., Chau, T., & Fehlings, D. (2009). The development of a home-based virtual reality therapy system to promote upper extremity movement for children with hemiplegic cerebral palsy. Technology and Disability, 21, 107–113.

    Google Scholar 

  • Magdalon, E. C., Michaelson, S. M., Quevedo, A. A., & Levin, M. F. (2011). Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment. Acta Psychologica, 138(1), 126–134.

    Article  PubMed  Google Scholar 

  • Miller, S., & Reid, D. (2003). Doing play: Competency, control, and expression. Cyberpsychology & Behavior, 6(6), 623–632.

    Article  Google Scholar 

  • Mirelman, A., Bonato, P., & Deutsch, J. E. (2009). Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke, 40(1), 169–174.

    Article  PubMed  Google Scholar 

  • Mirelman, A., Patritti, B. L., Bonato, P., & Deutsch, J. E. (2010). Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait & Posture, 31(4), 433–437.

    Article  Google Scholar 

  • Molier, B. I., Van Asseldonk, E. H., Hermens, H. J., & Jannink, M. J. (2010). Nature, timing, frequency and type of augmented feedback; does it influence motor relearning of the hemiparetic arm after stroke? A systematic review. Disability and Rehabilitation, 32, 1799–1809.

    Article  PubMed  Google Scholar 

  • Mouawad, M. R., Doust, C. G., Max, M. D., & McNulty, P. A. (2011). Wii-based movement therapy to promote improved upper extremity function post-stroke: A pilot study. Journal of Rehabilitation Medicine, 43(6), 527–533.

    Article  PubMed  Google Scholar 

  • Mumford, N., & Wilson, P. H. (2009). Virtual reality in acquired brain injury upper limb rehabilitation: Evidence-based evaluation of clinical research. Brain Injury, 23(3), 179–191.

    Article  PubMed  Google Scholar 

  • Newell, K. M., Yeuo-The, L., & Gottfried, M. K. (2001). Time scales in motor learning and development. Psychological Review, 108(1), 57–82.

    Article  CAS  PubMed  Google Scholar 

  • Nithianantharajah, J., & Hannan, A. J. (2006). Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nature Reviews. Neuroscience, 7(9), 697–709.

    Article  CAS  PubMed  Google Scholar 

  • Parsons, T. D., Rizzo, A. A., Rogers, S., & York, P. (2009). Virtual reality in paediatric rehabilitation: A review. Developmental Neurorehabilitation, 12(4), 224–238.

    Article  PubMed  Google Scholar 

  • Perani, D., Fazio, F., Borghese, N. A., Tettamanti, M., Ferrari, S., Decety, J., et al. (2001). Different brain correlates for watching real and virtual hand actions. NeuroImage, 14(3), 749–758.

    Article  CAS  PubMed  Google Scholar 

  • Petrosini, L., Graziano, A., Mandolesi, L., Neri, P., Molinari, M., & Leggio, M. G. (2003). Watch how to do it! new advances in learning by observation. Brain Research - Brain Research Reviews, 42(3), 252–264.

    Article  PubMed  Google Scholar 

  • Ploughman, M. (2002). A review of brain neuroplasticity and implications for the physiotherapeutic management of stroke. Physiotherapy Canada, 54(3), 164–176.

    Google Scholar 

  • Rizzo, A., & Kim, G. J. (2005). A SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence, 14(2), 119–146.

    Article  Google Scholar 

  • Robertson, J. V. G., & Roby-Brami, A. (2010). Augmented feedback, virtual reality and robotics for designing new rehabilitation interventions. In J. P. Didier & E. Bigand (Eds.), Rethinking physical and rehabilitation medicine: New technologies induce new learning strategies (pp. 223–245). Paris: Springer.

    Chapter  Google Scholar 

  • Rose, F. D., Attree, E. A., Brooks, B. M., & Johnson, D. A. (1998). Virtual environments in brain damage rehabilitation: A rationale from basic neuroscience. In G. Riva, B. K. Wiederhold, & M. Molinari (Eds.), Virtual environments in clinical psychology and neuroscience. Amsterdam, The Netherlands: Ios Press.

    Google Scholar 

  • Rose, F. D., Attree, E. A., Brooks, B. M., Parslow, D. M., Penn, P. R., & Ambihaipahan, N. (2000). Training in virtual environments: Transfer to real world tasks and equivalence to real task training. Ergonomics, 43(4), 494–511.

    Article  CAS  PubMed  Google Scholar 

  • Sandlund, M., McDonough, S., & Hager-Ross, C. (2009). Interactive computer play in rehabilitation of children with sensorimotor disorders: A systematic review. Developmental Medicine & Child Neurology, 51(3), 173–179.

    Article  Google Scholar 

  • Schmidt, R. A. (1991). Motor learning principles for physical therapy. Contemporary Management of Motor Problems: Proceedings of the II Step Conference (p. 49). Alexandria, Va: Foundation for Physical Therapy.

    Google Scholar 

  • Schmidt, R. A., & Lee, T. D. (2011). Motor control and learning: A behavioral emphasis (5th ed.). Champaign, IL: Human Kinetics.

    Google Scholar 

  • Schuler, T., Brutsch, K., Muller, R., van Hedel, U. J., & Meyer-Heim, A. (2011). Virtual realities as motivational tools for robotic assisted gait training in children: A surface electromyography study. Neurorehabilitation, 28(4), 401–411.

    PubMed  Google Scholar 

  • Schultheis, M. T., & Rizzo, A. A. (2001). The application of virtual reality technology in rehabilitation. Rehabilitation Psychology, 46, 296–311.

    Article  Google Scholar 

  • Snider, L., Majnemer, A., & Darsaklis, V. (2010). Virtual reality as a therapeutic modality for children with cerebral palsy. Developmental Neurorehabilitation, 13(2), 120–128.

    Article  PubMed  Google Scholar 

  • Subramanian, S. K. (2010). Does provision of extrinsic feedback result in improved motor learning in the upper limb poststroke? A systematic review of the evidence. Neurorehabilitation Neural Repair, 24(2), 113–124.

    Article  PubMed  Google Scholar 

  • Subramanian, S. K., Lourenço, C. B., Chilingaryan, G., Sveistrup, H., & Levin, M. F. (2013). Adaptive arm-motor recovery using a virtual reality intervention in chronic stroke: Randomized control trial. Neurorehabilitation Neural Repair, 27(1), 13–23.

    Article  PubMed  Google Scholar 

  • Sveistrup, H. (2004). Motor rehabilitation using virtual reality. Journal of NeuroEngineering and Rehabilitation, 1(1), 10. doi:10.1186/1743-0003-1-10.

    Article  PubMed Central  PubMed  Google Scholar 

  • Timmermans, A. A., Seelen, H. A., Willmann, R. D., & Kingma, H. (2009). Technology-assisted training of arm-hand skills in stroke: Concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. Journal of Neuroengineering & Rehabilitation, 6, 1. doi:10.1186/1743-0003-6-1.

    Article  Google Scholar 

  • Tunik, E., Saleh, S., Bagce, H., Merians, A., & Adamovich, S. V. (2011). Mirror feedback in virtual reality elicits ipsilesional motor cortex activation in chronic stroke patients. International Conference on Virtual Rehabilitation, Zurich, Switzerland. Washington, DC: IEEE.

    Google Scholar 

  • Volkening, K., Bergmann, J., Muller, F., Ziherl, J., Novak, D., Mihelj, M., et al. (2011). Cognitive demand in a VR-enriched arm training and its relation to performance, motivation and cognitive abilities. International Conference on Virtual Rehabilitation, Zurich, Switzerland. Washington, DC: IEEE.

    Google Scholar 

  • Walker, M. L., Ringleb, S. I., Maihafer, G. C., Walker, R., Crouch, J. R., Van Lunen, B., et al. (2010). Virtual reality-enhanced partial body weight-supported treadmill training poststroke: Feasibility and effectiveness in 6 subjects. Archives of Physical Medicine & Rehabilitation, 91(1), 115–122.

    Article  Google Scholar 

  • Wang, M., & Reid, D. (2011). Virtual reality in pediatric neurorehabilitation: Attention deficit hyperactivity disorder, autism and cerebral palsy. Neuroepidemiology, 36(1), 2–18.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, P. L., & Katz, N. (2004). The potential of virtual reality for rehabilitation. Journal of Rehabilitation Research and Development, 41(5), vii–x.

    PubMed  Google Scholar 

  • Weiss, P. L., Kizony, R., Feintuch, U., Rand, D., & Katz, N. (2006). Virtual reality applications in neurorehabilitation. In M. E. Selzer, L. Cohen, F. H. Gage, & S. Clarke (Eds.), Textbook of neural repair and rehabilitation (pp. 182–197). Cambridge, England: University Press.

    Google Scholar 

  • Weiss, P. L., Rand, D., Katz, R., & Kizony, R. (2004). Video capture virtual reality as a flexible and effective rehabilitation tool. Journal of Neuroengineering Rehabilitation, 1(1), 12.

    Article  PubMed Central  PubMed  Google Scholar 

  • Whyte, J., & Hart, H. (2003). It’s more than a black box; It’s a Russian doll: Defining rehabilitation treatments. American Journal of Physical Medicine and Rehabilitation, 82(8), 639–652.

    PubMed  Google Scholar 

  • Winstein, C. J., Pohl, P. S., & Lewthwaite, R. (1994). Effects of physical guidance and knowledge of results on motor learning: Support for the guidance hypothesis. Research Quarterly for Exercise & Sport, 65(4), 316–323.

    Article  CAS  Google Scholar 

  • Wishart, L., Lee, T., Ezekiel, H. J., Marley, T., & Lehto, N. K. (2000). Application of motor learning principles: The physiotherapy client as a problem solver. 1. Concepts. Physiotherapy Canada, Summer, 52, 229–232.

    Google Scholar 

  • You, S. H., Jang, S. H., Kim, Y. H., Kwon, Y. H., Barrow, I., & Hallett, M. (2005). Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy. Developmental Medicine & Child Neurology, 47(9), 628–635.

    Article  Google Scholar 

  • Zwicker, J. G., & Harris, S. R. (2009). Reflection on motor learning theory in pediatric occupational therapy practice. Canadian Journal of Occupational Therapy, 76(1), 29–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle E. Levac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Levac, D.E., Sveistrup, H. (2014). Motor Learning and Virtual Reality. In: Weiss, P., Keshner, E., Levin, M. (eds) Virtual Reality for Physical and Motor Rehabilitation. Virtual Reality Technologies for Health and Clinical Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0968-1_3

Download citation

Publish with us

Policies and ethics