Skip to main content

Photosynthesis and Increased Production of Protein

  • Chapter
Nutritional Improvement of Food and Feed Proteins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 105))

Abstract

Photosynthesis, the use of light energy in the conversion of CO2 and inorganic nutrients into plant material, is the ultimate source of the food protein necessary to man’s existence. Given certain assumptions, the overall maximal theoretical photosynthetic efficiency of agricultural plants can be calculated. Actual measured maximal growth rates of plants are equivalent to efficiency levels well below that theoretical maximum. In air, C4 plants can come closer to the theoretical value than C3 plants, perhaps because C4 plants avoid the occurrence of measurable photorespiration and oxygen inhibition of photosynthesis.

Alfalfa, a C3 legume, is an extremely productive protein source. Its protein yield per acre can surpass that of commonly grown C4 crops (corn, sorghum) and C3 seed crops (soybean, wheat, rice). Alfalfa leaf protein is of high nutritional quality and can apparently be used directly in the human diet, eliminating the protein loss involved in animal production.

Plant protein productivity can be raised as part of an increase in overall crop yield. The growth of plants in atmospheres with elevated CO2 levels can result in increased yields. In C3 plants this is due, at least in part, to the suppression of photorespiration and oxygen inhibition of photosynthesis. We have investigated the effect of CO2 concentration on alfalfa photosynthetic metabolism. Our results support the contention that alfalfa productivity can be increased by an environment of elevated CO2.

A second approach toward increased plant protein productivity is through regulation of carbon flow during photosynthesis so as to increase protein production relative to that of other plant constituents. In particular, we have investigated whether ammonia (the form in which plants first incorporate nitrogen) can act to regulate leaf carbon metabolism. Our results indicate that NH +4 , in part through stimulation of pyruvate kinase, brings about increased production of amino acids at the expense of sucrose production in alfalfa. That effect may be of considerable importance in the regulation of green leaf protein synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alich, J. R., Jr. and Inman, R. E. (1973). ‘Effective utilization of solar energy to produce clean fuel.’ National Science Foundation RANN report under grant GI 38723.

    Google Scholar 

  • Bassharn, J. A. (1971). The control of photosynthetic carbon metabolism. Science, 172, 526–534.

    Article  Google Scholar 

  • Bassham, J. A. (1973). Control of photosynthetic carbon metabolism. In, ‘Symposium of the Society for Experimental Biology 27, Rate Control of Biological Processes’. University Press, Cambridge.

    Google Scholar 

  • Bassham, J. A. (1977). Increasing crop productivity through more controlled photosynthesis. Science, 197, 630–638.

    Article  CAS  Google Scholar 

  • Bassham, J. A. (1978). The reductive pentose phosphate cycle and its regulation. In, Encyclopedia of Plant Physiology, New Series. Photosynthesis II. Regulation of Photosynthetic Carbon Metabolism and Related processes; M. Gibbs and E. Latzko (Editors). Springer Verlag, Berlin.

    Google Scholar 

  • Bassham, J. A. and Calvin, M. (1957). ‘The Path of Carbon in Photosynthesis.’ Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Bassham, J. A. and Kirk, M. (1973). Sequence of formation of phosphoglycolate and glycolate in photosynthesizing Chlorella pyrenoidosa. Plant Physiol., 52, 407–411.

    Article  CAS  Google Scholar 

  • Bassham, J. A. and Krause, G. H. (1969). Free energy changes and metabolic regulation in steady-state photosynthetic carbon reduction. Biochem. Biophys. Acta., 189, 207–221.

    Article  CAS  Google Scholar 

  • Beevers, L. and Hageman, R. H. (1969). Nitrate reduction in higher plants. Annu. Rev. Plant Physiol., 20, 495–522.

    Article  CAS  Google Scholar 

  • Bickoff, E. M., Booth, A. N., de Fremery, D., Edwards, R. H., Knuckles, B. E., Miller, R. E., Saunders, R. M. and Kohler, G. O. (1975). Nutritional evaluation of alfalfa leaf protein concentrate. In, ‘Protein Nutritional Quality of Foods and Feeds’, M. Friedman (Editor). Marcel Dekker, New York.

    Google Scholar 

  • Black, C. C. (1973). Photosynthetic carbon fixation in relation to net CO2 uptake. Annu. Rev. Plant Physiol., 24, 253–286.

    Article  CAS  Google Scholar 

  • Bowes, G., Ogren, W. L., and Hageman, R. H. (1971). Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem. Biophys. Res. Commun., 45, 716–722.

    Article  CAS  Google Scholar 

  • Bowman, J. C. (1973). Possibilities for changing by genetic means the biological efficiency of protein production by whole animals. In, ‘The Biological Efficiency of Protein Production,’ J. G. W. Jones (Editor). Cambridge University Press, London.

    Google Scholar 

  • Brown, A. W. A., Byerly, T. C., Gibbs, M. and San Pietro, A. (Editors). (1975). ‘Crop Productivity-Research Imperatives.’ Michigan Agricultural Experiment Station, East Lansing, MI.

    Google Scholar 

  • Burris, R. H. and Black, C. C. (Editors). (1976). ‘CO2 Metabolism and Plant Productivity.’ University Park Press, Baltimore, MD.

    Google Scholar 

  • Burris, J. E., Holm-Hansen, O. and Black, C. C. (1976). Glycine and serine production in marine plants as a measure of photo-respiration. Aust. J. Plant Physiol., 3, 87–92.

    Article  CAS  Google Scholar 

  • Canvin, D. T. and Atkins, C. A. (1974). Nitrate, nitrite, and ammonia assimilation by leaves: effect of light, carbon dioxide and oxygen. Planta, 116, 207–224.

    Article  CAS  Google Scholar 

  • Chapman, E. A. and Graham, D. (1974). The effect of light on the tricarboxylic acid cycle in green leaves. Plant Physiol., 53, 879–885.

    Article  CAS  Google Scholar 

  • Chollett, R. and Ogren, W. L. (1975). Regulation of photorespi- ration in C3 and C4 species. Bot. Rev., 41, 137–179.

    Article  Google Scholar 

  • Committee on Agricultural Production Efficiency. (1975). ‘Agricultural Production Efficiency.’ Board on Agriculture and Renewable Resources, Commission on Natural Resources, National Research Council. National Academy of Sciences, Washington, D. C.

    Google Scholar 

  • Cooper, D. R., Hill-Cottingham, D. G. and Lloyd-Jones, C. P. (1976). Absorption and redistribution of nitrogen during growth and development of field bean, Vicia faba. Physiol. Plant, 38, 313–318.

    Article  CAS  Google Scholar 

  • Cooper, J. P. (Editor). (1975). ‘Photosynthesis and Productivity in Different Environments.’ Cambridge University Press, Cambridge.

    Google Scholar 

  • Decker, J. P. (1955). A rapid, postillumination deceleration of respiration in green leaves. Plant Physiol., 30, 82–84.

    Article  CAS  Google Scholar 

  • Decker, J. P. (1957). Further evidence of increased carbon dioxide production accompanying photosynthesis. J. Sol. Energy Sci. Eng., 1, 30–33.

    Google Scholar 

  • De Fremery, D., Miller, R. E., Edwards, R. H., Knuckles, B. E., Bickoff, E. M. and Kohler, G. O. (1973). Centrifugal separation of white and green protein fractions from alfalfa juice following controlled heating. J. Agric. Food Chem., 21, 8C-889.

    Google Scholar 

  • Dickmann, D. I. and Gordon, J. C. (1975). Incorporation of C - photosynthate into protein during leaf development in young populus plants. Plant Physiol. 56, 23–27.

    Article  CAS  Google Scholar 

  • Duggleby, R. G. and Dennis, D. T. (1973). The characterization and regulatory properties of pyruvate kinase from cotton seeds. Arch. Biochem. Biophys., 155, 270–277.

    Article  CAS  Google Scholar 

  • Edwards, R. H., Miller, R. E., de Fremery, D., Knuckles, B. E., Bickoff, E. M. and Kohler, G. O. (1975). Pilot plant production of an edible white fraction leaf protein concentrate from alfalfa. J. Agric. Food Chem., 23, 620–626.

    Article  CAS  Google Scholar 

  • Egle, K. and Fock, H. (1967). Light respiration - correlations between CO2 fixation, O2 pressure and glycolate concentration. In, ‘The Biochemistry of Chloroplasts’, T. W. Goodwin (Editor). Academic Press, New York.

    Google Scholar 

  • Eskew, D. L., Schrader, L. E. and Bingham, E. T. (1973). Seasonal patterns of nitrate reductase activity and nitrate concentration of two alfalfa (Medicago sativa L.) cultivars. Crop Science, 13, 594–597.

    Article  CAS  Google Scholar 

  • Ford, M. A. and Thorne, G. N. (1967). Effect of CO2 concentration on growth of sugar-beet, barley, kale and maize. Annals of Bot., 31. 629–644.

    Google Scholar 

  • Forrester, M. L., Krotkov, G. and Nelson, C. D. (1966a). Effect of oxygen on photosynthesis, photorespiration and respiration in detached leaves. I. Soybean. Plant Physiol., 41, 422–427.

    Article  CAS  Google Scholar 

  • Forrester, M. L., Krotkov, G. and Nelson, C. D. (1966b). Effect of oxygen on photosynthesis, photorespiration and respiration in detached leaves. II. Corn and other monocotyledons. Plant Physiol., 41, 428–431.

    Article  CAS  Google Scholar 

  • Gerloff, E. D., Lima, I. H. and Stahmann, M. A. (1965). Amino acid composition of leaf protein concentrates. J. Agric. Food Chem., 13, 139–143.

    Article  CAS  Google Scholar 

  • Gifford, R. M. (1977). Growth pattern, carbon dioxide exchange and dry weight distribution in wheat growing under differing photosynthetic environments. Aust. J. Plant Physiol., 4, 99–110.

    CAS  Google Scholar 

  • Hardy, R. W. F. and Havelka, U. D. (1975). Nitrogen fixation research: A key to world food? Science, 188, 633–643.

    Article  CAS  Google Scholar 

  • Hardy, R. W. F. and Havelka, U. D. (1976). Photosynthate as a major factor limiting nitrogen fixation by field-grown legumes with emphasis on soybeans. In, ‘Symbiotic Nitrogen Fixation in Plants’, P. S. Nutman (Editor). Cambridge University Press, Cambridge.

    Google Scholar 

  • Harper, L. A., Baker, D. N., Box, J. E. and Hesketh, J. D. (1973). Carbon dioxide and the photosynthesis of field crops. A metered carbon dioxide release in cotton under field conditions. Agron. J., 65, 7–11.

    Article  CAS  Google Scholar 

  • Heber, U. (1974). Metabolite exchange between chloroplasts and cytoplasm. Annu. Rev. Plant Physiol., 25, 393–421.

    Article  CAS  Google Scholar 

  • Hess, J. L. and Tolbert, N. E. (1966). Glycolate, glycine, serine, and glycerate formation during photosynthesis by tobacco leaves. J. Biol. Chem., 241, 5705–5711.

    CAS  Google Scholar 

  • Hew, C. S., Krotkov, G. and Canvin, D. T. (1969). Determination of the CO2 evolution by green leaves in light. Plant Physiol., 44, 662–670.

    Article  CAS  Google Scholar 

  • Hofstra, G. and Hesketh, J. D. (1975). The effects of temperature and CO2 enrichment on photosynthesis in Soybean. In, Marcelle, R. (1975).

    Google Scholar 

  • Jackson, W. A. and Volk, R. J. (1970). Photorespiration. Annu. Rev. Plant Physiol., 12, 385–432.

    Article  Google Scholar 

  • Jensen, R. G., and Bassham, J. A. (1966). Photosynthesis by isolated chloroplasts. Proc. Nat. Acad. Sci. U.S.A., 56, 1095–1101.

    Article  CAS  Google Scholar 

  • Jollife, P. A. and Tregunna, E. B. (1968). Effect of temperature. CO2 concentration, and light intensity on oxygen inhibition of photosynthesis in wheat leaves. Plant Physiol., 43, 902–906.

    Article  Google Scholar 

  • Kanazawa, T., Kirk, M. R. and Bassham, J. A. (1970). Regulatory effects of ammonia on carbon metabolism in photosynthesizing Chlorella pyrenoidosa. Biochim. Biophys. Acta., 205, 401–408.

    Article  CAS  Google Scholar 

  • Kanazawa, T., Kanazawa, K., Kirk, M. R., and Bassham, J. A. (1972). Regulatory effects of ammonia on carbon metabolism in Chlorella pyrenoidosa during photosynthesis and respiration. Biochim. Biophys. Acta., 256, 656–669.

    Article  CAS  Google Scholar 

  • Kennedy, R. A. (1976). Photorespiration in C3 and C4 tissue cultures. Significance of Kranz anatomy to low photorespiration in C4 plants. Plant Physiol. 58, 573–578.

    Article  CAS  Google Scholar 

  • Kirk, P. R. and Leech, R. M. (1972) Amino acid biosynthesis by isolated chloroplasts during photosynthesis. Plant Physiol., 50, 228–234.

    Article  CAS  Google Scholar 

  • Krause, G. H., Thorne, S. W. and Lorimer, G. H. (1977). Glycolate synthesis by intact chloroplasts. Studies with inhibitors of photophosphorylation. Arch. Biochem. Biophys., 183, 471–479.

    Article  CAS  Google Scholar 

  • Krenzer, E. G., Moss, D. N. and Crookston, R. K. (1975). Carbon dioxide compensation points of flowering plants. Plant Physiol., 56, 194–206.

    Article  CAS  Google Scholar 

  • Ku, S.-B. and Edwards, G. E. (1977a). Oxygen inhibition of photosynthesis. Plant Physiol., 59, 991–999.

    Article  CAS  Google Scholar 

  • Ku, S.-B., Edwards, G. E. and Tanner, C. B. (1977b). Effects of light, carbon dioxide, and temperature on photosynthesis, oxygen inhibition of photosynthesis and transpiration in Solanum tuberosum. Plant Physiol., 59, 868–872.

    Article  CAS  Google Scholar 

  • Laing, W. A., Ogren, W. L., and Hageman, R. H. (1974). Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2 O2 and ribulose 1,5-diphosphate carboxylase. Plant Physiol., 54, 678–685.

    Article  CAS  Google Scholar 

  • Larson, P. R. and Gordon, J. C. (1969). Leaf development, photosyn-thesis,4C-distribution in Populus deltoides seedlings. Amer. J. Bot., 56, 1058–1066.

    Article  CAS  Google Scholar 

  • Lea, P. J. and Miflin, B. J. (1974). Alternative route for nitrogen assimilation in higher plants. Nature, 251, 614–616.

    Article  CAS  Google Scholar 

  • Lee, R. B. and Whittingham, C. P. (1974). The influence of partial pressure of carbon dioxide upon carbon metabolism in the tomato leaf. J. Exp. Bot., 25, 277–287.

    Article  CAS  Google Scholar 

  • Lloyd, N.D.H., Canvin, D. T. and Culver, D. A. (1977). Photosynthesis and photorespiration in algae. Plant Physiol., 59, 936–940.

    Article  CAS  Google Scholar 

  • Loewenberg, J. R. (1970). Protein synthesis in Xanthium leaf development. Plant and Cell Physiol., 11, 361–365.

    CAS  Google Scholar 

  • Loomis, R. S. and Gerakis, P. A. (1975). Productivity of agricultural ecosystems. In, Cooper, J. P. (Editor). (1975).

    Google Scholar 

  • Loomis, R. S. and Williams, W. A. (1963). Maximum crop productivity: An estimate. Crop Sci., 3, 67–72.

    Article  Google Scholar 

  • Loomis, R. S., Williams, W. A. and Hall, A. E. (1971). Agricultural productivity. Annu. Rev. Plant Physiol., 22, 431–68.

    Article  Google Scholar 

  • Ludlow, M. M. and Jarvis, P. G. (1971). Methods for measuring photorespiration in leaves. In, ‘Plant Photosynthetic Production Manual of Methods,’ Z. Sestak, J. Catsky, and P. G. Jarvis (Editors). Dr. W. Junk, The Hague.

    Google Scholar 

  • Ludwig, L. J. and Canvin, D. T. (1971). The rate of photorespiration during photosynthesis and the relationship of the substrate of light respiration to the products of photosynthesis in sunflower leaves. Plant Physiol., 48, 712–719.

    Article  CAS  Google Scholar 

  • Magalhaes, A. C., Neyra, C. A. and Hageman, R. H. (1974). Nitrite assimilation and amino nitrogen synthesis in isolated spinach chloroplasts. Plant Physiol., 53, 411–415.

    Article  CAS  Google Scholar 

  • Mahon, J. D., Fock, H. and Canvin, D. T. (1974). Changes in specific radioactiy of sunflower leaf metabolites during photosynthesis in CO2 and CO2 at three concentrations of CO2. Planta, 120, 245–254.

    Article  CAS  Google Scholar 

  • Marcelle, R. (Editor). (1975). ‘Environmental and Biological Control of Photosynthesis’. Dr. W. Junk, The Hague.

    Google Scholar 

  • Miflin, B. J. and Lea, P. J. (1976). The pathway of nitrogen assimilation in plants. Phytochemistry, 15, 873–885.

    Article  CAS  Google Scholar 

  • Miflin, B. J. and Lea, P. J. (1977). Amino acid metabolism. Annu. Rev. Plant Physiol., 28, 299–329.

    Article  CAS  Google Scholar 

  • Miller, G. and Evans, H. J. (1957). The influence of salts on pyruvate kinase from tissue of higher plants. Plant Physiol., 32, 346–354.

    Article  CAS  Google Scholar 

  • Mitchell, C. A. and Stocking, C. R. (1975). Kinetics and energetics of light-driven chloroplast glutamine synthesis. Plant Physiol., 55, 59–63.

    Article  CAS  Google Scholar 

  • Moss, D. N. (1962). The limiting carbon dioxide concentration for photosynthesis. Nature, 193, 587.

    Article  CAS  Google Scholar 

  • Nakayama, H., Fujii, M. and Miura, K. (1976). Partial purification and some regulatory properties of pyruvate kinase from germinating castor bean endosperm. Plant and Cell Physiol., 17, 653–660.

    CAS  Google Scholar 

  • Norris, L., Norris, R. E. and Calvin, M. (1955). A survey of the rates and products of short-term photosynthesis in plants of nine phyla. J. Exp. Bot., 6, 64–74.

    Article  CAS  Google Scholar 

  • Ogren, W. L. (1975). Control of photorespiration in soybean and maize. In, Marcelle, R. (1975).

    Google Scholar 

  • Osmond, C. B. and Bjorkman, O. (1972). Simultaneous measurements of oxygen effects on net photosynthesis and glycolate metabolism in C3 and C4 species of Atriplex. Carnegie Inst. Washington Yearbook, 71, 141–148.

    Google Scholar 

  • Platt, S. G. and Bassham, J. A. (1977). Separation of 14C-labeled glycolate pathway metabolites from higher plant photosynthate. J. Chromatog., 133, 396–401.

    Article  CAS  Google Scholar 

  • Platt, S. G., Plaut, Z. and Bassham, J. A. (1976). Analysis of steady-state photosynthesis in alfalfa leaves. Plant Physiol., 57, 69–73.

    Article  CAS  Google Scholar 

  • Platt, S. G., Plaut, Z. and Bassham, J. A. (1977a). Steady state photosynthesis in alfalfa leaflets: Effects of carbon dioxide concentration. Plant Physiol., 60, 230–234.

    Article  CAS  Google Scholar 

  • Platt, S. G., Plaut, Z. and Bassham, J. A. (1977b). Ammonia regulation of carbon metabolism in photosynthesizing leaf discs. Plant Physiol., 60, 739–742.

    Article  CAS  Google Scholar 

  • Platt, S. G., Erwin, W. and DeGroot, C. W. (1978). Simple push-pull glass valves. J. Chem. Ed., in press.

    Google Scholar 

  • Plaut, Z., Platt, S. G. and Bassham, J. A. (1976). Nitrate and ammonium regulation of carbon metabolism in photosynthesizing alfalfa leaf discs. Plant Physiol., 57, S-58.

    Google Scholar 

  • Quebedeaux, B. and Chollet, R. (1977). Comparative growth analyses of Panicum Species with differing rates of photorespiration. Plant Physiol., 59, 42–44.

    Article  CAS  Google Scholar 

  • Rabson, R., Tolbert, N. E. and Kearney, P. C. (1962). Formation of serine and glyceric acid by the glycolate pathway. Arch. Biochem. Biophys., 98, 154–163.

    Article  CAS  Google Scholar 

  • Randall, D. D., Tolbert, N. E. and Gremel, D. (1971). 3-Phosphoglycerate phosphatase in plants. H. Distribution, physiological considerations, and comparison with P-glycolate phosphatase. Plant Physiol., 48, 480–487.

    Article  CAS  Google Scholar 

  • Robinson, J. M. and Gibbs, M. (1974). Photosynthetic intermediates, the Warburg effect, and glycolate synthesis in isolated spinach chloroplasts. Plant Physiol., 53, 790–797.

    Article  CAS  Google Scholar 

  • Seubert, W. and Schoner, W. (1971). The regulation of pyruvate kinase In, ‘Current Topics in Cellular Regulation, Volume 3,’ B. L. Horecker and E. A. Stadtman (Editors). Academic Press, New York.

    Google Scholar 

  • Shain, Y. and Gibbs, M. (1971). Formation of glycolate by a reconstituted spinach chloroplast preparation. Plant Physiol., 48, 325–330.

    Article  CAS  Google Scholar 

  • Snyder, F. W. and Tolbert, N. E. (1974). Effect of CO2 concentration on glycine and serine formation during photorespiration. Plant Physiol., 53, 514–515.

    Article  CAS  Google Scholar 

  • Stahmann, M. A. (1968). The potential for protein production from green plants. Econ. Bot., 22, 73–79.

    Article  Google Scholar 

  • Steer, B. T. (1974). Control of diurnal variations in photosynthetic products. Plant Physiol., 54, 758–761.

    Article  CAS  Google Scholar 

  • Tamas, I. A. and Bidwell, R. G. S. (1970). 14CO2 fixation in leaf discs of Phaseolus vulgaris. Can. J. Bot., 48, 1259–1263.

    Article  CAS  Google Scholar 

  • Tolbert, N. E. (1971a). Leaf peroxisomes and photosynthesis. In, ‘Photosynthesis and hotorespiration’, M. D. Hatch, C. B. Osmond and R. O. Slayter, (Editors). Wiley-Interscience, New York.

    Google Scholar 

  • Tolbert, N. E. (1971b). Microbodies-peroxisomes and glyoxysomes. Annu. Rev. Plant Physiol., 22, 45–74.

    Article  CAS  Google Scholar 

  • Tolbert, N. E. (1973a). Compartmentation and control in micro-bodies. In: ‘Symposia of the Society for Experimental Biology 27, Rate Control of Biological Processes’. University Press, Cambridge.

    Google Scholar 

  • Tolbert, N. E. (1973b). Glycolate biosynthesis. In: ‘Current Topics in Cellular Regulation, Volume 7, B. L. Horecker and E. A. Stadtman (Editors). Academic Press, New York.

    Google Scholar 

  • Tomlinson, J. D. and Turner, J. F. (1973). Pyruvate kinase of higher plants. Biochem. Biophys. Acta, 329, 128–139.

    Article  CAS  Google Scholar 

  • Whittingham, C. P. and Pritchard, G. G. (1963). The production of glycolate during photosynthesis in Chlorella. Proc. R. Soc. London B, 157, 366–380.

    Article  CAS  Google Scholar 

  • Wilson, A. T. and Calvin, M. (1955). The photosynthetic cycle. CO2 dependent transients. J. Amer. Chem. Soc., 77, 5948–5957.

    Article  CAS  Google Scholar 

  • Wittwer, S. H. (1974). Maximum production capacity of food crops. Bioscience, 24, 216–224.

    Article  Google Scholar 

  • Zelitch, I. (1965). The relation of glycolic acid synthesis to the primary photosynthetic carboxylation reaction in leaves. J. Biol. Chem., 240, 1869–1876.

    CAS  Google Scholar 

  • Zelitch, I. (1971). Photosynthesis, Photorespiration, and Plant Productivity. Academic Press, New York.

    Google Scholar 

  • Zelitch, I. (1975a). Improving the efficiency of photosynthesis. Science, 188, 626–683.

    Article  CAS  Google Scholar 

  • Zelitch, I. (1975b). Environmental and biological control of photosynthesis: General assessment. In, Marcelle, R. (1975).

    Google Scholar 

  • Zelitch, I. (1975c). Pathways of carbon fixation in green plants. Annu. Rev. Biochem., 44, 123–145.

    Article  CAS  Google Scholar 

  • Zelitch, I. and Walker, D. A. (1964). The role of glycolic acid metabolism in opening of leaf stomata. Plant Physiol., 39, 856–862.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Platt, S.G., Bassham, J.A. (1978). Photosynthesis and Increased Production of Protein. In: Friedman, M. (eds) Nutritional Improvement of Food and Feed Proteins. Advances in Experimental Medicine and Biology, vol 105. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3366-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3366-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3368-5

  • Online ISBN: 978-1-4684-3366-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics