Skip to main content

Early Metazoan Evolution and the Meaning of Its Fossil Record

  • Chapter
Evolutionary Biology

Part of the book series: Evolutionary Biology ((EBIO,volume 27))

Abstract

Much new data on late Precambrian and early Phanerozoic metazoan fossils have recently emerged as a result of discoveries of new fossil sites (Mikulic et al., 1985; Conway Morris, 1989; Hou et al., 1991), reinterpretation of earlier findings (Whittington, 1980; Conway Morris, 1985b; Conway Morris et al., 1987), and application of new paleontological techniques. Chemical extraction from the rock matrix of originally phosphatic or phosphatized skeletal fossils (Rozanov et al., 1969; Qian and Bengtson, 1989;Bengtson et al., 1990; Dzik et al., 1993), as well as finely phosphatized arthropod cuticles and soft tissues (Müller, 1979, 1983; Müller and Walossek, 1985; Andres, 1989) has appeared especially fruitful. The importance of this new source of evidence has been inadequately acknowledged not only in the zoological but even in the paleontological literature, partly because of diverging opinions on the significance of geological age in phylogenetic inference (Patterson, 1981; Briggs and Fortey, 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alberti, G. K. B., 1985, Neue Taxa der Dacryoconarida, insbesondere der Corniculinidae n. fam., aus dem basalen Flemersbacher Tentaculitenkalk (Bayerische Faziesreihe, Unter-Devon) von Oberfranken, Mitt. Geol.-Paläontol. Inst. Univ. Hamburg 59:39–50.

    Google Scholar 

  • Aldridge, R. J., Briggs, D. E. G., Clarkson, E. N. K., and Smith, M. P., 1986, The affinities of conodonts—New evidence from the Carboniferous of Edinburgh, Scotland, Lethaia 19:279–291.

    Article  Google Scholar 

  • Andres, D., 1988, Strukturen, Apparate und Phylogenie primitiver Conodonten, Palaeontographica 200A.-105–152.

    Google Scholar 

  • Andres, D., 1989, Phosphatisierte Fossilien aus dem unteren Ordoviz von Südschweden, Berl. Geowiss. Abh. (A) 106:9–19.

    Google Scholar 

  • Arduini, P., Pinna, G., and Teruzzi, G., 1981, Megaderaion sinemuriense n. g. n. sp., a new fossil enteropneust of the Sinemurian of Osteno in Lombardy, Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 122:104–108.

    Google Scholar 

  • Bandel, K., 1982, Morphologie und Bildung der frühontogenetischen Gehäuse bei conchiferen Mollusken, Facies 7:1–198.

    Article  Google Scholar 

  • Bandel, K., 1986, The reconstruction of “Hyolithes kingl” as annelid worm from the Cambrian of Jordan, Mitt. Geol.-Paläontol. Inst. Univ. Hamburg 61:35–101.

    Google Scholar 

  • Bardack, D., 1986, Les premiers fossiles de hagfish (Myxiniformes) et Enteropneusta (Hemichordata) dépots de la faune (Pennsylvanienne) du Mazon Creek dans Illinois, USA, Bull. Trimestr. Soc. Hist. Nat. Amis Mus. Autun 116:97.

    Google Scholar 

  • Bardack, D., 1991, First fossil hagfish (Myxinoidea): A record from the Pennsylvanian of Illinois, Science 254:701–703.

    Article  PubMed  CAS  Google Scholar 

  • Bardack, D., and Richardson, E. S., Jr., 1977, New agnathous fishes from the Pennsylvanian of Illinois, Fieldiana Geol. 33:489–510.

    Google Scholar 

  • Bengtson, S., 1970, The lower Cambrian fossil Tommotia, Lethaia 3:363–392.

    Article  Google Scholar 

  • Bengtson, S., 1977, Early Cambrian button-shaped phosphatic microfossils from the Siberian Platform, Palaeontology 20:751–762.

    Google Scholar 

  • Bengtson, S., 1981, Atractosella, a Silurian alcyonacean octocoral, J. Paleontol. 55:281–294.

    Google Scholar 

  • Bengtson, S., 1983, The early history of the Conodonta, Fossils Strata 15:5–19.

    Google Scholar 

  • Bengtson, S., 1991a, The origin and extinction of phyla, Geol. Fören. Stockh. Förh. 113:76–77.

    Article  Google Scholar 

  • Bengtson, S., 1991b, Oddballs from the Cambrian start to get even, Nature 351:184–185.

    Article  Google Scholar 

  • Bengtson, S., 1992, The cup-shaped Cambrian fossil Maikhanella and the relationship between coeleoscleritophorans and molluscs, Lethaia 25:401–420.

    Article  Google Scholar 

  • Bengtson, S., and Conway Morris, S., 1984, A comparative study of lower Cambrian Halkieria and middle Cambrian Wiwaxia, Lethaia 17:307–329.

    Article  Google Scholar 

  • Bengtson, S., and Urbanek, A., 1986, Rhabdotubus, a Middle Cambrian rhabdopleurid hemichordate, Lethaia 19:293–308.

    Article  Google Scholar 

  • Bengtson, S., and Yue, Z., 1992, Predatorial borings in Late Precambrian mineralized exoskeletons, Science 257:367–369.

    Article  PubMed  CAS  Google Scholar 

  • Bengtson, S., Matthews, S. C., and Missarzhevsky, V. V., 1986, The Cambrian netlike fossil Microdictyon, in: Problematic Fossil Taxa, (A. Hoffman and M. H. Nitecki, eds.), pp. 97–115, Oxford University Press, Oxford.

    Google Scholar 

  • Bengtson, S., Conway Morris, S., Cooper, B. J., Jell, P. A., and Runnegar, B. N., 1990, Early Cambrian fossils from South Australia, Mem. Assoc. Australas. Palaeontol. 9:1–364.

    Google Scholar 

  • Berg-Madsen, V., 1987, Tuarangia from Bornholm (Denmark) and similarities in Baltoscandian and Australasian late middle Cambrian faunas, Alcheringa 11:245–259.

    Article  Google Scholar 

  • Bergström, J., 1986, Metazoan evolution—A new model, Zool. Scripta 15:189–200.

    Article  Google Scholar 

  • Bergström, J., 1991, Metazoan evolution around the Precambrian—Cambrian transition, in: The Early Evolution of Metazoa and Significance of Problematic Taxa, (S. Conway Morris and A. S. Simonetta, eds.), pp. 25–34, Cambridge University Press, Cambridge.

    Google Scholar 

  • Bergström, J., Stürmer, W., and Winter, G., 1980, Palaeoisopus, Palaeopantopus and Palaeothea, pycnogonid arthropods from the Lower Devonian Hunsrück Slate, West Germany. Paläontol. Z. 54:7–54.

    Google Scholar 

  • Bischoff, G. C. O., 1978, Internal structures of conulariid tests and their functional significance, with special reference to Circoconulariina n. subord, Senckenb. Lethaea 59:275–327.

    Google Scholar 

  • Blieck, A., 1992, At the origin of chordates, Geobios 25:101–113.

    Article  Google Scholar 

  • Briggs, D. E. G., 1976, The arthropod Branchiocaris n. gen., middle Cambrian, Burgess Shale, British Columbia, Bull. Geol. Surv. Can. 264:1–17.

    Google Scholar 

  • Briggs, D. E. G., 1978, The morphology, mode of life, and affinities of Canadaspis perfecta (Crustacea: Phyllocarida), middle Cambrian, Burgess Shale, British Columbia, Philos. Trans. R. Soc. Lond. B 281:439–487.

    Article  Google Scholar 

  • Briggs, D. E. G., 1981, The arthropod Odaraia alata Walcott, middle Cambrian, Burgess Shale, British Columbia, Philos. Trans. R. Soc. Lond. B 291:541–584.

    Article  Google Scholar 

  • Briggs, D. E. G., 1991, Extraordinary fossils, Am. Sci. 79:130–141.

    Google Scholar 

  • Briggs, D. E. G., and Collins, D., 1988, A middle Cambrian chelicerate from Mount Stephen, British Columbia, Palaeontology 31:779–798.

    Google Scholar 

  • Briggs, D. E. G., and Fortey, R. A., 1989, The early radiation and relationships of the major arthropod groups, Science 246:241–243.

    Article  PubMed  CAS  Google Scholar 

  • Briggs, D. E. G., Bruton, D. L., and Whittington, H. B., 1979, Appendages of the arthropod Aglaspis spinifer (Upper Cambrian, Wisconsin) and their significance, Palaeontology 22:167–180.

    Google Scholar 

  • Briggs, D. E. G., Clarkson, E. N. K., and Aldridge, R. J., 1983, The conodont animal, Lethaia, 16:1–14.

    Article  Google Scholar 

  • Butterfield, N. J., 1990, A reassessment of the enigmatic Burgess Shale fossil Wiwaxia corrugata (Matthew) and its relationship to the polychaete Canadia spinosa Walcott, Paleobiology 16:287–303.

    Google Scholar 

  • Chen, J., 1988, Precambrian metazoans of the Huai River drainage area (Anhui, E. China): Their taphonomic and ecological evidence, Senckenb. Lethaea 69:189–215.

    Google Scholar 

  • Chen, J., and Erdtmann, B.-D., 1991, Lower Cambrian fossil Lagerstätte from Chengjiang, Yunnan, China: Insight for reconstructing early metazoan life, in: The Early Evolution of Metazoa and Significance of Problematic Taxa (S. Conway Morris and A. Simonetta, eds.), pp. 57–76, Cambridge University Press, Cambridge.

    Google Scholar 

  • Chen, J., Hou, X., and Lu, H., 1989a, Early Cambrian netted scale-bearing worm-like sea animal, Acta Palaeontol. Sin. 28:1–16.

    Google Scholar 

  • Chen, J., Hou, X., and Lu, H., 1989b, Early Cambrian hock glass-like rare sea animal Dinomischus (Entoprocta) and its ecological features, Acta Palaeontol. Sin. 28:59–71.

    Google Scholar 

  • Conway Morris, S., 1976, A new Cambrian lophophorate from the Burgess Shale of British Columbia, Palaeontology 19:199–222.

    Google Scholar 

  • Conway Morris, S., 1977a, A redescription of the Middle Cambrian worm Amiskwia sagittiformis Walcott from the Burgess Shale of British Columbia, Paläontol. Z. 51:271–287.

    Google Scholar 

  • Conway Morris, S., 1977b, Fossil priapulid worms, Spec. Pap. Palaeont. 20:1–97.

    Google Scholar 

  • Conway Morris, S., 1979a, The Burgess Shale (Middle Cambrian) fauna, Annu. Rev. Ecol. Syst. 10:327–349.

    Article  Google Scholar 

  • Conway Morris, S., 1979b, Middle Cambrian polychaetes from the Burgess Shale of British Columbia, Philos. Trans. R. Soc. Lond. B 285:227–274.

    Article  Google Scholar 

  • Conway Morris, S., 1985a, The middle Cambrian metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale, British Columbia, Canada, Philos. Trans. R. Soc. Lond. B 307:507–586.

    Article  Google Scholar 

  • Conway Morris, S., 1985b, Cambrian Lagerstätten: Their distribution and significance, Philos. Trans. R. Soc. Lond. B 311:49–65.

    Article  Google Scholar 

  • Conway Morris, S., 1989, The persistence of Burgess Shale-type faunas: Implications for the evolution of deeper-water faunas, Trans. R. Soc. Edinburgh 80:271–283.

    Article  Google Scholar 

  • Conway Morris, S., 1990, Typhloesus wellsi (Melton & Scott 1973), a bizarre metazoan from the Carboniferous of Montana, Philos. Trans. R. Soc. Lond. B 327:595–624.

    Article  Google Scholar 

  • Conway Morris, S., and Chen, M., 1992, Carinachitids, hexaconulariids, and Punctatus: problematic metazoans from the Early Cambrian of South China, J. Paleont., 66:384–406.

    Google Scholar 

  • Conway Morris, S., and Peel, J. S., 1990, Articulated halkieriids from the lower Cambrian of north Greenland, Nature 345:802–805.

    Article  Google Scholar 

  • Conway Morris. S., and Robison, R. A., 1986, Middle Cambrian priapulids and other soft-bodied fossils from Utah and Spain, Univ. Kansas Paleontol. Contrib. 117:1–22.

    Google Scholar 

  • Conway Morris, S., and Robison, R. A., 1988, More soft-bodied animals and algae from the middle Cambrian of Utah and British Columbia, Univ. Kansas Paleontol. Contrib. 122:1–48.

    Google Scholar 

  • Conway Morris, S., Peel, J. S., Higgins, A. K., Soper, N. J., and Davis, N. C., 1987, A Burgess Shale-like fauna from the lower Cambrian of North Greenland, Nature 326:181–183.

    Article  Google Scholar 

  • Dahl, E., and Hessler, R. R., 1982, The crustacean lacinia mobilis: A reconsideration of its origin, function and phylogenetic implications, Zool. J. Linn. Soc. 74:133–146.

    Article  Google Scholar 

  • Dilly, P. N., 1985, The prosicular stage of Rhabdopleura (Pterobranchia: Hemichordata), J. Zool. A (Lond.) 206:163–174.

    Google Scholar 

  • Donovan, S. K., and Paul, C. R. C., 1985, A new possible armoured worm from the Tremadoc of Sheinton, Shropshire, Proc. Geol. Assoc. 96:87–91.

    Article  Google Scholar 

  • Durham, J. W., 1974, Systematic position of Eldonia ludwigi Walcott, J. Paleont., 48:750–755.

    Google Scholar 

  • Dzik, J., 1978, Larval development of the hyolithids, Lethaia 11:293–299.

    Article  Google Scholar 

  • Dzik, J., 1980, Ontogeny of Bactrotheca and related hyoliths, Geol. Fören. Stockh. Förh. 102(3): 223–233.

    Article  Google Scholar 

  • Dzik, J., 1981a, Evolutionary relationships of early Palaeozoic ‘cyclostomatous’ Bryozoa, Palaeontology 24(4):827–861.

    Google Scholar 

  • Dzik, J., 1981b, Origin of the Cephalopoda, Acta Palaeontol. Polon. 26(2):161–191.

    Google Scholar 

  • Dzik, J., 1983, Larval development and relationships of Mimospira—A presumably hyperstrophic Ordovician gastropod, Geol. Fören. Stockh. Förh. 104(3):231–239.

    Article  Google Scholar 

  • Dzik, J., 1986a, Turrilepadida and other Machaeridia, in: Problematic Fossil Taxa (A. Hoffman and M. H. Nitecki, eds.), pp. 116–134, Oxford University Press, Oxford.

    Google Scholar 

  • Dzik, J., 1986b, Chordate affinities of the conodonts, in: Problematic Fossil Taxa (A. Hoffman and M. H. Nitecki, eds.), pp. 240–254, Oxford University Press, Oxford.

    Google Scholar 

  • Dzik, J., 1991a, Is fossil evidence consistent with traditional views of the early Metazoan phylogeny? in The Early Evolution of Metazoa and Significance of Problematic Taxa (S. Conway Morris and A. Simonetta, eds.), pp. 47–56, Cambridge University Press, Cambridge.

    Google Scholar 

  • Dzik, J., 1991b, Possible solitary bryozoan ancestors from the early Palaeozoic and the affinities of the Tentaculita, in: Bryozoaires actuels et fossiles: Bryozoa Living and Fossil (Société des Sciences Naturelles de l’Ouest de la France, Mémoire hors série 1) (F. P. Bigey and J.-L. d’Hondt, eds.), pp. 121–131.

    Google Scholar 

  • Dzik, J., 1991c, Features of the fossil record of evolution, Acta Palaeontol. Polon. 36(2):91–113.

    Google Scholar 

  • Dzik, J., 1991d, Evolution of oral apparatuses in conodont chordates, Acta Palaeontol. Polon. 36(3):265–323.

    Google Scholar 

  • Dzik, J., 1992a, Dzieje zycia na Ziemi. Wprowadzenie do paleobiologii, Panstwowe Wydawnictwo Naukowe, Warsaw.

    Google Scholar 

  • Dzik, J., 1992b, Early astogeny and relationships of the Ordovician rhabdomesid bryozoans, Acta Palaeontol. Polon. 37:37–54.

    Google Scholar 

  • Dzik, J., and Drygant, D., 1986, The apparatus of panderodontid conodonts, Lethaia 19(2): 133–141.

    Article  Google Scholar 

  • Dzik, J., and Korn, D., 1992, Devonian ancestors of Nautilus, Paläontol. Z. 66:81–98.

    Google Scholar 

  • Dzik, J., and Krumbiegel, G., 1989, The oldest ‘onychophoran’ Xenusion: A link connecting phyla? Lethaia 22(2): 169–181.

    Article  Google Scholar 

  • Dzik, J., Olempska, E., and Pisera A., 1993, Ordovician carbonate platform ecosystem of the Holy Cross Mountains, Palaeontol Polon., in press.

    Google Scholar 

  • Elliott, D. K., 1987, A reassessment of Astraspis desiderata, the oldest North American vertebrate, Science 237:190–192.

    Article  PubMed  CAS  Google Scholar 

  • Emerson, M. J., and Schram, F. R., 1986, Remipedia. Part 2. Paleontology, Proc. San Diego Soc. Nat. Hist. 7:1–52.

    Google Scholar 

  • Emerson, M. J., and Schram, F. R., 1990, The origin of crustacean biramous appendages and the evolution of Arthropoda, Science 250:667–669.

    Article  PubMed  CAS  Google Scholar 

  • Evans, K. R., and Rowell, A. J., 1990, Small shelly fossils from Antarctica: An early Cambrian faunal connection with Australia, J. Paleontol. 64:692–699.

    Google Scholar 

  • Fortey, R. A., and Cooper, R. A., 1986, A phylogenetic classification of the graptoloids, Palaeontology 29:631–654.

    Google Scholar 

  • Glaessner, M. F., 1979, Lower Cambrian Crustacea and annelid worms from Kangaroo Island, South Australia, Alcheringa 3:21–31.

    Article  Google Scholar 

  • Gould, S. J., 1989, Wonderful Life. The Burgess Shale and the Nature of History, Norton, New York.

    Google Scholar 

  • Grant, S. W., 1990, Shell structure and distribution of Cloudina, a. potential index fossil for the terminal Proterozoic, in: Proterozoic Evolution and Environments (A. H. Knoll and J. H. Ostrom, eds.),Am. J. Sci. Spec. Vol. 290-A:261–294.

    Google Scholar 

  • Haszprunar, G., 1992, The first mollusks—Small animals, Boll. Zool. 59:1–16.

    Article  Google Scholar 

  • Hinz, I., Kraft, P., Mergl, M., and Müller, K. J., 1990, The problematic Hadimopanella, Kaimenella, Milaculum and Utahphospha identified as sclerites of Palaeoscolecida, Lethaia 23:217–221.

    Article  Google Scholar 

  • Hou, X., and Chen, J., 1989a, Early Cambrian tentacled worm-like animals (Facivermis gen. nov.) from Chengjiang, Yunnan, Acta Palaeontol. Sin. 28:32–41.

    Google Scholar 

  • Hou, X., and Chen, J., 1989b, Early Cambrian arthropod-annelid intermediate sea animal, Luolishania gen. n. from Chengjiang, Yunnan, Acta Palaeontol. Sin. 28:207–213.

    Google Scholar 

  • Hou, X., and Sun, W., 1988, Discovery of Chengjiang fauna at Meishucun, Jinning, Yunnan, Acta Palaeontol. Sin. 27:1–12.

    CAS  Google Scholar 

  • Hou, X., Ramsköld, L., and Bergström, J., 1991, Composition and preservation of the Chengjiang fauna—A Lower Cambrian soft-bodied biota, Zool. Scripta 20:395–411.

    Article  Google Scholar 

  • Hughes, C. P., 1975, Redescription of Burgessia bella from the middle Cambrian Burgess Shale, British Columbia, Fossils Strata 4:415–435.

    Google Scholar 

  • Jeffries, R. P. S., Lewis, M., and Donovan, J. K., 1987, Protocystites menevensis—A stem group chordate (Cornute) from the middle Cambrian of South Wales, Palaeontology 30:429–484.

    Google Scholar 

  • Jell, P. A., 1979, Plumulites and the Machaeridian problem, Alcheringa 3:253–259.

    Article  Google Scholar 

  • Jell, P. A., and Jell, J. S., 1976, Early middle Cambrian corals from western New South Wales, Alcheringa 1:181–195.

    Article  Google Scholar 

  • Jenkins, R. J. F., 1985, The enigmatic Ediacaran (late Precambrian) genus Rangea and related forms, Paleobiology 11:336–355.

    Google Scholar 

  • Jensen, S., 1990, Predation by early Cambrian trilobites on infaunal worms—Evidence from the Swedish Mickwitzia Sandstone, Lethaia 23:29–42.

    Article  Google Scholar 

  • Jones, D., and Thompson, I., 1977, Echiura from the Pennsylvanian Essex fauna of northern Illinois, Lethaia 10:317–325.

    Article  Google Scholar 

  • Kerber, M., 1988, Mikrofossilien aus unterkambrischen Gesteinen der Montagne Noire, Frankreich, Palaeontogr. A 202:127–203.

    Google Scholar 

  • Kukalova-Peck, J., 1986, New Carboniferous Diplura, Monura, and Thysanura, the hexapod ground plan, and the role of thoracic side lobes and the origin of wings (Insecta), Can. J. Zool. 65:2327–2345.

    Article  Google Scholar 

  • Lafuste, J., Debrenne, F., Gandin, A., and Gravestock, D., 1991, The oldest tabulate coral and the associated Archaeocyatha, lower Cambrian, Flinders Ranges, South Australia, Geobios 24:697–718.

    Article  Google Scholar 

  • Lund, R., and Janvier, P., 1986, A second lamprey from the lower Carboniferous (Namurian) of Bear Gulch, Montana (U.S.A.), Geobios 19:647–652.

    Article  Google Scholar 

  • Mallatt, J., 1984, Early vertebrate evolution: Pharyngeal structure and the origin of gnathostomes, J. Zool. (Lond.) 204:169–183.

    Article  Google Scholar 

  • Marek, L., 1967, The class Hyolitha in the Caradoc of Bohemia, Sborn. Geol. Věd. Paleontol. 9:51–114.

    Google Scholar 

  • Marek, L., and Yochelson, E. L., 1976, Aspects of the biology of Hyolitha (Mollusca), Lethaia 9:65–82.

    Article  Google Scholar 

  • McKinney, F. K., and Jackson, J. B. C., 1989, Bryozoan Evolution, Unwin Hyman, Boston.

    Google Scholar 

  • McLean, J. H., 1981, The Galapagos rift limpet Neomphalus: Relevance to understanding the evolution of a major Paleozoic-Mesozoic radiation, Malacologia 21:291–336.

    Google Scholar 

  • Mikulic, D. G., Briggs, D. E. G., and Kluessendorf, J., 1985, A new exceptionally preserved biota from the lower Silurian of Wisconsin, U.S.A., Philos. Trans. R. Soc. Lond. B 311:75–85.

    Article  Google Scholar 

  • Müller, K. J., 1979, Phosphatocopine ostracodes with preserved appendages from the upper Cambrian of Sweden, Lethaia 12:12–27.

    Article  Google Scholar 

  • Müller, K. J., 1983, Crustacea with preserved soft parts from the upper Cambrian of Sweden, Lethaia 16:93–109.

    Article  Google Scholar 

  • Müller, K. J., and Miller, J. F., 1976, The problematic microfossils Utahphospha from the upper Cambrian of the western United States, Lethaia 9:391–395.

    Article  Google Scholar 

  • Müller, K. J., and Walossek, D., 1985, A remarkable arthropod fauna from the upper Cambrian “Orsten” of Sweden, Trans. R. Soc. Edinburgh 76:161–172.

    Article  Google Scholar 

  • Müller, K. J., and Walossek, D., 1986a, Martinssonia elongata gen. et sp. n., a crustacean-like euarthropod from the upper Cambrian ‘Orsten’ of Sweden, Zool. Scripta 15:73–92.

    Article  Google Scholar 

  • Müller, K. J., and Walossek, D., 1986b, Arthropod larvae from the upper Cambrian of Sweden, Trans. R. Soc. Edinburgh 77:157–179.

    Article  Google Scholar 

  • Müller, K. J., and Walossek, D., 1988, External morphology and larval development of the upper Cambrian maxillopod Bredocaris admirabilis, Fossils Strata 23:1–70.

    Google Scholar 

  • Patterson, C., 1981, Significance of fossils in determining evolutionary relationships, Annu. Rev. Ecol. Syst. 12:195–223.

    Article  Google Scholar 

  • Paul, C. R. C., 1988, The phylogeny of the cystoids. in: Echinoderm Phylogeny and Evolutionary Biology (C. R. C. Paul and A. B. Smith, eds.), pp. 199–213, Clarendon Press, Oxford.

    Google Scholar 

  • Paul, C. R. C., and Smith, A. B., 1984, The early radiation and phylogeny of echinoderms, Biol. Rev. 59:443–481.

    Article  Google Scholar 

  • Peel, J., 1991, Functional morphology of the class Helcionelloida nov., and the early evolution of the Mollusca, in: The Early Evolution of Metazoa and Significance of Problematic Taxa (S. Conway Morris and A. Simonetta, eds.), pp. 157–177, Cambridge University Press, Cambridge.

    Google Scholar 

  • Peel, J., and Berg-Madsen, V., 1988, A new salterellid (Phylum Agmata) from the upper middle Cambrian of Denmark, Bull. Geol. Soc. Denmark 37:75–82.

    Google Scholar 

  • Pojeta, J., Jr., 1978, The origin and early taxonomic diversification of pelecypods, Philos. Trans. R. Soc. Lond. B 284:225–246.

    Article  Google Scholar 

  • Pojeta, J., Jr., and Runnegar, B., 1979a, The paleontology of rostroconch molluscs and the early history of the phylum Mollusca, U. S. Geol. Surv. Prof. Pap. 968:1–85.

    Google Scholar 

  • Pojeta, J., Jr., and Runnegar, B., 1979b, Rhytiodentalium kentuckyensis, a new genus and new species of Ordovician scaphopod, and the early history of scaphopod molluscs, J. Paleontol. 53:530–541.

    Google Scholar 

  • Qian, Y., and Bengtson, S., 1989, Palaeontology and biostratigraphy of the early Cambrian Meishucunian Stage in Yunnan Province, South China, Fossils Strata 24:1–156.

    Google Scholar 

  • Ramsköld, L., 1992a, The second leg row of Hallucigenia discovered, Lethaia 25:221–224.

    Article  Google Scholar 

  • Ramsköld, L., 1992b, Homologies in Cambrian Onychophora, Lethaia 25:443–460.

    Article  Google Scholar 

  • Ramsköld, L., and Hou, X., 1991, New early Cambrian animal and onychophoran affinities of enigmatic metazoans, Nature 351:225–228.

    Article  Google Scholar 

  • Reif, W.-E., 1982, Evolution of dermal skeleton and dentition in vertebrates. The odontode regulation theory, Evolutionary Biology, Vol. 15 (M. K. Hecht, B. Wallace, and G. T. Prance, eds.), pp. 287–368, Plenum Press, New York.

    Chapter  Google Scholar 

  • Rickards, R. B., and Stait, B. A., 1984, Psigraptus, its classification, evolution and zooid, Alcheringa 8:101–111.

    Article  Google Scholar 

  • Ritchie, A., and Gilbert-Tomlinson, J., 1977, First Ordovician vertebrates from the southern hemisphere, Alcheringa 1:351–368.

    Article  Google Scholar 

  • Rolfe, W. D. I., 1981, Septemchiton—A misnomer, J. Paleontol. 55:675–677.

    Google Scholar 

  • Rowell, A. J., and Caruso, N. E., 1985, The evolutionary significance of Nisusia sulcata, and early articulate brachiopod, J. Paleontol. 59:1227–1243.

    Google Scholar 

  • Rozanov, A. J., Missarzhevsky, V. V., Volkova, N. A., Voronova, L. G., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Michniak, R., Pychova, N. G., and Sidorov, A. D., 1969, Tommotian Stage and the Cambrian lower boundary problem, Trudy Inst. Geol. Akad. Nauk SSSR 206:1–380 [in Russian].

    Google Scholar 

  • Rozhnov, S. V., Fedorov, A. B., and Sayutina, T. A., 1992, Lower Cambrian Echinodermata on the USSR territory, Paleontol. Zh. 1992:53–66 [in Russian].

    Google Scholar 

  • Runnegar, B., 1981, Muscle scars, shell form and torsion in Cambrian and Ordovician univalved molluscs, Lethaia 14:311–322.

    Article  Google Scholar 

  • Runnegar, B., Pojeta, J., Jr., Morris, N. J., Taylor, J. D., Taylor, M. E., and McClung, G., 1975, Biology of the Hyolitha, Lethaia 8:181–191.

    Article  Google Scholar 

  • Runnegar, B., Pojeta, J., Jr., Taylor, M. E., and Collins, D., 1979, New species of the Cambrian and Ordovician chitons Matthevia and Chelodes from Wisconsin and Queensland: Evidence for the early history of polyplacophoran molluscs, J. Paleontol. 53:1374–1394.

    Google Scholar 

  • Sansom, I. J., Smith, M. P., Armstrong, H. A., and Smith, M. M., 1992, Presence of the earliest vertebrate hard tissues in conodonts, Science 256:1308–1311.

    Article  PubMed  CAS  Google Scholar 

  • Schram, F. R., 1973, Pseudocoelomates and a nemertine from the Illinois Pennsylvanian, J. Paleontol. 47:985–989.

    Google Scholar 

  • Schram, F. R., 1978, Arthropods: A convergent phenomenon, Fieldiana Geol. 39:61–108.

    Google Scholar 

  • Schram, F. R., 1979, Worms of the Mississippian Bear Gulch Limestone of central Montana, U.S.A., Trans. San Diego Soc. Nat. Hist. 19:107–120.

    Google Scholar 

  • Schram, F. R., Yager, J., and Emerson, M. J., 1986, Remipedia. Part 1. Systematics, San Diego Soc. Nat. Hist. Mem. 15:1–60.

    Google Scholar 

  • Scilacher, A., 1989, Vendozoa: Organismic construction in the Proterozoic biosphere, Lethaia 22:229–239.

    Article  Google Scholar 

  • Scilacher, A., 1992, Vendobionta and Psammocorallia: Lost constructions of Precambrian evolution, J. Geol. Soc. Lond. 149:607–613.

    Article  Google Scholar 

  • Smith, A. B., 1988, Patterns of diversification and extinction of early Palaeozoic echinoderms, Palaeontology 31:799–828.

    Google Scholar 

  • Smith, M. P., Briggs, D. E. G., and Aldridge, R. J., 1987, A conodont animal from the lower Silurian of Wisconsin, USA, and the apparatus architecture of panderodontid conodonts, in: Palaeobiology of Conodonts (R. J. Aldridge, ed.), pp. 91–104, Ellis Horwood, Chichester.

    Google Scholar 

  • Sprinkle, J., 1973, Morphology and evolution of blastozoan echinoderms, Mus. Comp. Zool. Harvard Univ. Spec. Publ. 1973:1–283

    Google Scholar 

  • Stolarski, J., 1993, Ontogenetic development and functional morphology in the early growth stages of Calceola sandalina Linné, Courier Forsch. Inst. Senckenb., in press.

    Google Scholar 

  • Sun, W., and Hou, X., 1989, Early Cambrian medusae from Chengjiang, Yunnan, Acta Palaeontol. Sin. 28:257–270.

    Google Scholar 

  • Sweet, W. C., 1988, The Conodonta. Morphology, Taxonomy, Paleoecology and Evolutionary History of a Long-Extinct Animal Phylum, Clarendon Press, Oxford.

    Google Scholar 

  • Szaniawski, H., 1982, Chaetognath grasping spines recognized among Cambrian protoconodonts, J. Paleontol. 56:806–810.

    Google Scholar 

  • Ubaghs, G., and Robison, R. A., 1985, A new homoiostelean and a new eocrinoid from the middle Cambrian of Utah, Univ. Kansas Paleontol. Contrib. 115:1–24.

    Google Scholar 

  • Ubaghs, G., and Robison, R. A., 1988, Homalozoan echinoderms of the Wheeler Formation (middle Cambrian) of western Utah, Univ. Kansas Paleontol. Contrib. 120:1–17.

    Google Scholar 

  • Urbanek, A., 1986, The enigma of graptolite ancestry: Lesson from a phylogenetic debate, in: Problematic Fossil Taxa (A. Hoffman and M. H. Nitecki, eds.), pp. 184–226, Oxford University Press, Oxford.

    Google Scholar 

  • Ushatinskaya, G. T., 1987, Unusual inarticulate brachiopods from the lower Cambrian of Mongolia, Paleontol. Zh. 1987:62–68.

    Google Scholar 

  • Valkov, A. K., 1987, Biostratigraphy of the Early Cambrian of the East of Siberian Platform: Yudomo-Olenekian region, Nauka, Moscow [in Russian].

    Google Scholar 

  • Van dem Boogaard, M., 1988, Some data on Milaculum Müller, 1973, Scripta Geol. 88:1–25.

    Google Scholar 

  • Van Iten, H., 1991, Evolutionary affinities of conulariids, in: The Early Evolution of Metazoa and Significance of Problematic Taxa (S. Conway Morris and A. Simonetta, eds.), pp. 145–155, Cambridge University Press, Cambridge.

    Google Scholar 

  • Walossek, D., and Müller, K. J., 1990, Upper Cambrian stem-lineage crustaceans and their bearing upon the monophyletic origin of Crustacea and the position of Agnostus, Lethaia 23:409–427.

    Article  Google Scholar 

  • Walossek, D., and Szaniawski, H., 1991, Cambrocaris baltica n. gen. n.sp., a possible stem-lineage crustacean from the upper Cambrian of Sweden, Lethaia 24:363–378.

    Article  Google Scholar 

  • Webers, G. F., and Yochelson, E. L., 1989, Late Cambrian molluscan faunas and the origin of the Cephalopoda, in: Origins and Evolution of the Antarctic Biota (J. A. Crame, ed.), Geol. Soc. Spec. Publ. 47:29–42.

    Google Scholar 

  • Weedon, M. J., 1991, Microstructure and affinities of the enigmatic Devonian tubular fossil Trypanopora, Lethaia 24:227–234.

    Article  Google Scholar 

  • Whittard, W. F., 1954, Palaeoscolex piscatorum gen. et sp. nov., a worm from the Tremadocian of Shropshire, Q. J. Geol. Soc. Lond. 109:125–133.

    Article  Google Scholar 

  • Whittington, H. B., 1974, Yohoia Walcott and Plenocaris n. gen., arthropods from the Burgess Shale, Middle Cambrian, British Columbia, Bull. Geol. Surv. Can. 231:1–20.

    Google Scholar 

  • Whittington, H. B., 1975, The enigmatic animal Opabinia regalis, middle Cambrian, Burgess Shale, British Columbia, Philos. Trans. R. Soc. Lond. B 271:1–41.

    Article  Google Scholar 

  • Whittington, H. B., 1978, The lobopod animal Aysheaia pedunculata Walcott, middle Cambrian, Burgess Shale, British Columbia, Philos. Trans. R. Soc. Lond. B 284:165–197.

    Article  Google Scholar 

  • Whittington, H. B., 1979, Early arthropods, their appendages and relationships, in: The Origin of Major Invertebrate Groups (M. R. House, ed.), pp. 253–268, Academic Press, London.

    Google Scholar 

  • Whittington, H. B., 1980, The significance of the fauna of the Burgess Shale, middle Cambrian, British Columbia, Proc. Geol. Assoc. 91:127–148.

    Article  Google Scholar 

  • Whittington, H. B., 1981, Rare arthropods from the Burgess Shale, middle Cambrian, British Columbia, Philos. Trans. R. Soc. Lond. B 292:329–357.

    Article  Google Scholar 

  • Whittington, H. B., and Briggs, D. E. G., 1985, The largest Cambrian animal, Anomalocaris, Burgess shale, British Columbia, Philos. Trans. R. Soc. Lond. B 309:569–609.

    Article  Google Scholar 

  • Wright, J., 1990, Conodont apatite: Structure and geochemistry, in: Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends (J. G. Carter, ed.), Vol. 1, pp. 445–459, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Yalden, D. W., 1985, Feeding mechanisms as evidence for cyclostome monophyly, Zool. J. Linn. Soc. 84:291–300.

    Article  Google Scholar 

  • Yochelson, E. L., 1970, The early Cambrian fossil Salterella conulata Clark in eastern North America, U.S. Geol Surv. Prof. Pap. 683-B:1–10.

    Google Scholar 

  • Yochelson, E. L., 1988, Comments and criticisms concerning Bandel’s The Reconstruction of “Hyolithes Kingi” as Annelid Worm from the Cambrian of Jordan, Mitt. Geol.-Palaeontol. Inst. Univ. Hamburg 67:135–144.

    Google Scholar 

  • Yochelson, E. L., and Lindemann, R. H., 1986, Considerations on systematic placement of the Styliolines (Incertae sedis: Devonian), in: Problematic Fossil Taxa (A. Hoffman and M. H. Nitecki, eds.), pp. 45–58, Oxford University Press, Oxford.

    Google Scholar 

  • Yochelson, E. L., Flower, R. H., and Webers, G. F., 1973, The bearing of the new Late Cambrian monoplacophoran genus Knightoconus upon the origin of the Cephalopoda, Lethaia 6:275–310.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dzik, J. (1993). Early Metazoan Evolution and the Meaning of Its Fossil Record. In: Hecht, M.K., MacIntyre, R.J., Clegg, M.T. (eds) Evolutionary Biology. Evolutionary Biology, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2878-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2878-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6248-7

  • Online ISBN: 978-1-4615-2878-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics