Skip to main content

Methodologies for Mapping Plant Functional Types

  • Chapter
Advances in Land Remote Sensing

Plant functional type (PFT) is a crucial variable needed in studies of global climate, carbon cycle and ecosystem change. Using remote sensing techniques to extract PFTs is a relatively recent field of research. To date, only a very few methods for mapping PFTs have been reported. This chapter provides an overview of recent developments in this evolving field and discusses future research needs. A brief survey of existing methods for mapping PFTs is presented, followed by a discussion of several methodological issues pertaining to the development of robust remote sensing techniques for mapping of PFTs at regional to global scales. The chapter also outlines a multisource data fusion framework for improved mapping of PFTs from satellite observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benediktsson JA, Swain PH, Ersoy OK (1990) Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28:540–552

    Article  Google Scholar 

  • Bonan GB (1993) Importance of leaf area index and forest type when estimating photosynthesis in boreal forests. Remote Sens. Environ. 43:303–314

    Article  Google Scholar 

  • Bonan GB (1995) Land-atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model. J. Geophys. Res. 100:2817–2831

    Article  Google Scholar 

  • Bonan GB (1996) A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: technical description and user’s guide. NCAR Technical Note NCAR/TN-417 + STR. National Center for Atmospheric Research, Boulder, Colorado, 150pp

    Google Scholar 

  • Bonan GB, Levis S, Kergoat L, Oleson KW (2002) Landscapes as patches of plant functional types: an integrating concept for climate and ecosystem models. Global Biogeochem. Cycles 16 (2), doi:10.1029/2000GB001360

    Google Scholar 

  • Box EO (1995) Factors determining distributions of tree species and plant functional types. Vegetatio 121(1/2):101–116

    Article  Google Scholar 

  • Box EO (1996) Plant functional types and climate at the global scale. J. Veg. Sci. 7:309–320

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth, Belmont, CA.

    Google Scholar 

  • Brown JF, Loveland TR, Merchant JW, Reed BC (1993) Using multisource data in global land cover characterization: concepts, requirements and methods. Photogramm. Eng. Remote Sens. 59:977–987

    Google Scholar 

  • Campbell JB (1978) A geographical analysis of image interpretation methods. Prof. Geogr. 30:264–269

    Article  Google Scholar 

  • DeFries RS, Hansen M, Townshend JGR, Sohlberg R (1998) Global land cover classification at 8 km spatial resolution: the use of training data derived from Landsat imagery in decision tree classifiers. Int. J. Remote Sens. 19:3141–3168

    Article  Google Scholar 

  • DeFries RS, Townshend JRG, Hansen MC (1999) Continuous fields of vegetation characteristics at the global scale at 1-km resolution. J. Geophys. Res. 104D:16911–16923

    Article  Google Scholar 

  • DeFries RS, Hansen MC, Townshend JRG (2000a) Global continuous fields of vegetation characteristics: a linear mixture model applied to multi-year 8 km AVHRR data. Int. J. Remote Sens. 21:1389–1414

    Article  Google Scholar 

  • DeFries RS, Hansen MC, Townshend JRG, Janetos AC, Loveland TR (2000b) A new global 1-km dataset of percentage tree cover derived from remote sensing. Global Change Biol. 6:247–254

    Article  Google Scholar 

  • Dempster AP (1967) Upper and lower probabilities induced by multivalued mappings. Ann. Math. Stat. 38:325–329

    Article  Google Scholar 

  • Denning AS, Collatz GJ, Zhang C, Randall DA, Berry JA, Sellers PJ, Colello GD, Dazlich DA (1996) Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Part 1: surface carbon fluxes, Tellus 48B:521–542

    Google Scholar 

  • Dickinson RE, Shaikh M, Bryant R, Graumlich L (1998) Interactive canopies for a climate model. J. Climate 11:2823–2836

    Article  Google Scholar 

  • Fang H, Liang S (2005) A hybrid inversion method for mapping leaf area index from MODIS data: experiments and application to broadleaf and needleleaf canopies. Remote Sens. Environ. 94:405–424

    Article  Google Scholar 

  • Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA, Washington WM (2005) The importance of land-cover change in simulating future climates. Science 310:1674–1678

    Article  Google Scholar 

  • Foley JA, Prentice CI, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles 10:603–628

    Article  Google Scholar 

  • Friedl MA, Brodley CE (1997) Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 61:399–409

    Article  Google Scholar 

  • Friedl MA, Brodley CE, Strahler AH (1999) Maximizing land cover classification accuracies produced by decision trees at continental to global scales. IEEE Trans. Geosci. Remote Sens. 37:969–977

    Article  Google Scholar 

  • Friedl MA, McIver DK, Hodges JCF, Zhang X, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schnieder A, Cooper A, Baccini A, Gao F, Schaaf C (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sens. Environ. 83(1-2):287–302

    Article  Google Scholar 

  • Gamon JA, Huemmrich KF, Peddle DR, Chen J, Fuentes D, Hall FG, Kimball JS, Goetz S, Gu J, McDonald KC, Miller JR, Moghaddam M, Rahman AF, Roujean JL, Smith EA, Walthall CL, Zarco-Tejada P, Fernandes R, Cihlar J (2004) Remote sensing in BOREAS: lessens learned. Remote Sens. Environ. 89:139–162

    Article  Google Scholar 

  • Hansen M, Dubayah R, DeFries R (1996) Classification trees: an alternative to traditional land cover classifiers. Int. J. Remote Sens. 17:1075–1081

    Article  Google Scholar 

  • Hansen MC, DeFries RS, Townshend JRG, Sohlberg R (2000) Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 26:1331–1364

    Google Scholar 

  • Justice CO, Townshend JRG, Vermote E, Masuoka E, Wolfe R, Saleous N, Roy D, Morisette J (2002) An overview of MODIS land data processing and product status. Remote Sens. Environ. 83:3–15

    Article  Google Scholar 

  • Kimes DS, Harrison PR, Ratclife PA (1991) A knowledge-based expert system for inferring vegetation characteristics. Int. J. Remote Sens. 12:1987–2020

    Article  Google Scholar 

  • Kucharik CJ, Foley JA, Delire C, Fisher VA, Coe MT, Lenters JD, Young-Molling C, Ramankutty N, Norman JM, Gower ST (2000) Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Global Biogeochem. Cycles 14:795–825

    Article  Google Scholar 

  • Lawton RO, Nair US, Pielke Sr. RA, Welch RM (2001) Climatic impact of tropical lowland deforestation on nearby montane cloud forest. Science 294:584–587

    Google Scholar 

  • Le Hégarat-Mascle S, Richard D, Ottl é C (2003) Multi-scale data fusion using Dempster-Shafer evidence theory. Int. Comput.-Aid. Eng. 10:9–22

    Google Scholar 

  • Lein JK (2003) Applying evidential reasoning methods to agriculture land cover classification. Int. J. Remote Sens. 24:4161–4180

    Article  Google Scholar 

  • Liang S (2001) Land cover classification methods for multiyear AVHRR data. Int. J. Remote Sens. 22:1479–1493

    Article  Google Scholar 

  • Liang S (2003) A direct algorithm for estimating land surface broadband albedos from MODIS Imagery. IEEE Trans. Geosci. Remote Sens. 41:136–145

    Article  Google Scholar 

  • Liang S (2004) Quantitative remote sensing of land surfaces. Wiley, New York, 534pp

    Google Scholar 

  • Lloyd D (1990) A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. Int. J. Remote Sens. 11:2269–2279

    Article  Google Scholar 

  • Loveland TR, Merchant JW, Ohlen DO, Brown JF (1991) Development of a land cover characteristics database for the counterminous US. Photogramm. Eng. Remote Sens. 57:1453–1463

    Google Scholar 

  • Loveland TR, Merchant JW, Reed BC, Brown JF, Ohlen DO, Olson P, Hutchinson J (1995) Seasonal land cover regions of the United States. Ann. Assoc. Am. Geogr. 85:339–355

    Article  Google Scholar 

  • Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 21:1303–1330

    Article  Google Scholar 

  • Marland G, Pielke Sr. RA, Apps M, Avissar R, Betts RA, Davis KJ, Frumhoff PC, Jackson ST, Joyce LA, Kauppi P, Katzenberger J, MacDicken KG, Neilson RP, Niles JO, Niyogi DS, Norby RJ, Pena N, Sampson N, Xue Y (2003) The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy. Climate Policy 3:149–157

    Article  Google Scholar 

  • McIntyre S, Diaz S, Lavorel S, Wolfgang C (1999) Plant functional types and disturbance dynamics - introduction. J. Veg. Sci. 10:604–608

    Google Scholar 

  • Myneni RB, Maggion S, Iaquinta J, Privette JL, Gobron N, Pinty B, Verstraete MM, Kimes DS, Williams DL (1995) Optical remote sensing of vegetation: modeling, caveats and algorithms. Remote Sens. Environ. 51:169–188

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981-1991. Nature 386:698–702

    Article  Google Scholar 

  • Nair US, Lawton RO, Welch RM, Pielke Sr. RA (2003) Impact of land use on Costa Rican tropical montane cloud forests: sensitivity of cumulus cloud field characteristics to lowland deforestation. J. Geophys. Res. 108:D7, 4206, doi:10.1029/2001JD001135

    Google Scholar 

  • Nemani R, Running SW (1996) Implementation of a hierarchical global vegetation classification in ecosystem function models. J. Veg. Sci. 7:337–346

    Article  Google Scholar 

  • Oleson KW, Bonan GB (2000) The effects of remotely sensed plant functional type and leaf area index on simulations of boreal forest surface fluxes by the NCAR land surface model. J. Hydrometeorol. 1:431–446

    Article  Google Scholar 

  • Olson JS, Watts JA, Allison LJ (1983) Carbon in live vegetation of major world ecosystems. ORNL-5862, Oak Ridge National Laboratory, Oak Ridge TN

    Google Scholar 

  • Peddle DR (1995a) Knowledge formulation for supervised evidential classification. Photogramm Eng. Remote Sens. 61:409–417

    Google Scholar 

  • Peddle DR (1995b) MERCURY: an evidential reasoning image classifier. Comput. Geosci. 21:1163–1176

    Article  Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties, and climate. J. Biogeogr. 19:117–134

    Article  Google Scholar 

  • Prince SD, Goward SN (1995) Global primary production: a remote sensing approach. J. Biogeogr. 22:815–835

    Article  Google Scholar 

  • Roughgarden J, Running SW, Matson PA (1991) What does remote sensing do for ecology. Ecology 72:1918–1922

    Article  Google Scholar 

  • Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications. I. Hydrological balance, canopy gas exchange and primary production processes. Ecol. Model. 42:125–154

    Article  Google Scholar 

  • Running SW, Loveland TR, Pierce LL, Nemani RR, Hunt ER Jr. (1995) A remote sensing based vegetation classification logic for global land cover analysis. Remote Sens. Environ. 51:39–48

    Article  Google Scholar 

  • Sellers PJ, Schimel DS (1993) Remote sensing of the land biosphere and biogeochemistry in the EOS era: science priorities, methods and implementation - EOS land biosphere and biogeochemical cycles panels. Global Planet. Change 7:279–297

    Article  Google Scholar 

  • Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A simple biosphere model (SIB) for use within general circulation models. J. Atmos. Sci. 43:505–531

    Article  Google Scholar 

  • Sellers PJ, Meeson BW, Hall FG, Asrar G, Murphy RE, Schiffer RA, Bretherton FP, Dickinson RE, Ellingson RG, Field CB, Huemmrich KF, Justice CO, Melack JM, Roulet NT, Schimel DS, Try PD (1995) Remote sensing of the land surface for studies of global change: models -algorithms - experiments. Remote Sens. Environ. 51:3–26

    Article  Google Scholar 

  • Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, Denning AS, Mooney HA, Nobre CA, Sato N, Field CB, Henderson-Sellers A (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275:502–509

    Article  Google Scholar 

  • Semenova GV, van der Maarel E (2000) Plant functional types - a strategic perspective. J. Veg. Sci. 11:917–922

    Article  Google Scholar 

  • Shafer G (1976) A Mathematical theory of evidence. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Smith TM, Shugart HH, Woodward FI (Eds.) (1997) Plant functional types: their relevance to ecosystem properties and global change. Cambridge University Press, New York, 369 pp

    Google Scholar 

  • Strahler A, Coauthors (1999) MODIS Land Cover Product Algorithm Theoretical Basis Document (ATBD). Version 5.0. Boston University

    Google Scholar 

  • Steyaert LT, Hall FG, Loveland TR (1997) Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1 km AVHRR and Landsat TM data. J. Geophys. Res. 102:29581–29598

    Article  Google Scholar 

  • Soh L, Tsatsoulis C, Gineris D, Bertoia C (2004) ARKTOS: an intelligent system for SAR sea ice image classification. IEEE Trans. Geosci. Remote Sens. 42(1):229–247

    Article  Google Scholar 

  • Sun W, Heidt V, Gong P, Xu G (2003) Information fusion for rural land-use classification with high resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 41:883–890

    Article  Google Scholar 

  • Sun, W. (2004) Land-Use Classification Using High Resolution Satellite Imagery: A New Infor mation Fusion Method - An Application in Landau, Germany. University of Mainz Press, 95pp

    Google Scholar 

  • Sun W, Liang S, Xu G, Fang H (2005) Improving MODIS PFT product using multisource evidential reasoning. Proceedings of the 9th International Symposium on Physical Measurements and Signatures in Remote Sensing 1, pp. 225-227

    Google Scholar 

  • Sun W, Liang S, Xu G, Fang H, Townshend, JR, Dickinson R (2007) Mapping plant functional types from MODIS data using multisource evidential reasoning. Remote Sensing of Environment (in press)

    Google Scholar 

  • Tian Y, Dickinson RE, Zhou L, Myneni RB, Friedl M, Schaaf CB, Carroll M, Gao F (2004) Land boundary conditions from MODIS data and consequences for the albedo of a climate model. Geophys. Res. Lett. 31:L05504, doi:10.1029/2003GL019104

    Article  Google Scholar 

  • Townshend JRG, Justice CO (1981) Information extraction from remotely sensed data - a user view. Int. J. Remote Sens. 2:313–329

    Article  Google Scholar 

  • Townshend JRG, Justice CO, Kalb V (1987) Characterization and classification of South American land cover types. Int. J. Remote Sens. 8:1189–1207

    Article  Google Scholar 

  • Townshend JRG, Justice CO, Li W, Gurney C, McManus J (1991) Global land cover classification by remote sensing: present capabilities and future possibilities. Remote Sens. of Environ. 35:243–255

    Article  Google Scholar 

  • Woodward FI, Cramer W (1996) Plant functional types and climatic changes: Introduction. J. Veg. Sci. 7:306–308

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Sun, W., Liang, S. (2008). Methodologies for Mapping Plant Functional Types. In: Liang, S. (eds) Advances in Land Remote Sensing. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6450-0_14

Download citation

Publish with us

Policies and ethics