Skip to main content

Characterization of Antimicrobial Peptide–Membrane Interaction Using All-Atom Molecular Dynamic Simulation

  • Protocol
  • First Online:
Immunity in Insects

Abstract

The investigation of peptides interaction with cell membranes is essential for understanding the basic functions such as membrane transport, fusion, and signaling processes, which may elucidate the potential applications of peptides in biomedicine. Antimicrobial peptides (AMPs) are now widely explored as an alternative to antibiotics owing to their superior ability to disrupt cell membrane both alone and with cargo molecules. Understanding the interaction mechanism of AMP is significant for many therapeutic purposes, including targeted microbial cell death. Cell membranes are mostly characterized by a membrane bilayer, which presents a complex and heterogeneous association of molecules flexible for an external agent. Hence, studies of protein–membrane interactions constitute a challenge in the structural biology field. Molecular dynamics (MD) is one of the useful methods to investigate membrane-associated processes. An extensive set of model bilayers and micelles differing in lipid composition are used to study different classes of membrane-active proteins and peptides like toxins, antimicrobial, Trojan, and fusion peptides. Regardless of the limitations of the MD timescale, membrane simulation results are capable of giving a balanced picture for the mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Venable RM, Krämer A, Pastor RW (2019) Molecular dynamics simulations of membrane permeability. Chem Rev 119(9):5954–5997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol 9(9):646

    Article  CAS  Google Scholar 

  3. Lee J, Jung SW, Cho AE (2016) Molecular insights into the adsorption mechanism of human β-Defensin-3 on bacterial membranes. Langmuir 32(7):1782–1790. https://doi.org/10.1021/acs.langmuir.5b04113

    Article  CAS  PubMed  Google Scholar 

  4. Amos ST, Vermeer LS, Ferguson PM, Kozlowska J, Davy M, Bui TT, Drake AF, Lorenz CD, Mason AJ (2016) Antimicrobial peptide potency is facilitated by greater conformational flexibility when binding to Gram-negative bacterial inner membranes. Sci Rep 6:37639. https://doi.org/10.1038/srep37639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hultmark D, Steiner H, Rasmuson T, Boman HG (1980) Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106(1):7–16

    Article  CAS  PubMed  Google Scholar 

  6. Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12(1):3–11

    Article  CAS  PubMed  Google Scholar 

  7. Lee T-H, N Hall K, Aguilar M-I (2016) Antimicrobial peptide structure and mechanism of action: a focus on the role of membrane structure. Curr Top Med Chem 16(1):25–39

    Article  CAS  PubMed  Google Scholar 

  8. Bahar A, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6(12):1543–1575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kang H-K, Kim C, Seo CH, Park Y (2017) The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J Microbiol 55(1):1–12

    Article  CAS  PubMed  Google Scholar 

  10. Radek K, Gallo R (2007) Antimicrobial peptides: natural effectors of the innate immune system. In: Seminars in immunopathology, vol 1. Springer, New York, pp 27–43

    Google Scholar 

  11. Kouranov A, Xie L, de la Cruz J, Chen L, Westbrook J, Bourne PE, Berman HM (2006) The RCSB PDB information portal for structural genomics. Nucleic Acids Res 34(suppl_1):D302–D305

    Article  CAS  PubMed  Google Scholar 

  12. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52(2):255–268

    Article  Google Scholar 

  13. Sharma V, Belevich G, Gamiz-Hernandez AP, Róg T, Vattulainen I, Verkhovskaya ML, Wikström M, Hummer G, Kaila VR (2015) Redox-induced activation of the proton pump in the respiratory complex I. Proc Natl Acad Sci U S A 112(37):11571–11576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ulmschneider JP, Ulmschneider MB (2018) Molecular dynamics simulations are redefining our view of peptides interacting with biological membranes. Acc Chem Res 51(5):1106–1116

    Article  CAS  PubMed  Google Scholar 

  15. Marrink SJ, De Vries AH, Tieleman DP (2009) Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim Biophys Acta 1788(1):149–168

    Article  CAS  PubMed  Google Scholar 

  16. Nelson MT, Humphrey W, Gursoy A, Dalke A, Kalé LV, Skeel RD, Schulten K (1996) NAMD: a parallel, object-oriented molecular dynamics program. Int J High Perform Comput Appl 10(4):251–268

    Google Scholar 

  17. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Leonard AN, Pastor RW, Klauda JB (2018) Parameterization of the CHARMM all-atom force field for ether lipids and model linear ethers. J Phys Chem B 122(26):6744–6754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kubelka J, Chiu TK, Davies DR, Eaton WA, Hofrichter J (2006) Sub-microsecond protein folding. J Mol Biol 359(3):546–553

    Article  CAS  PubMed  Google Scholar 

  20. Voter AF (1997) A method for accelerating the molecular dynamics simulation of infrequent events. J Chem Phys 106(11):4665–4677

    Article  CAS  Google Scholar 

  21. Bussi G, Laio A, Parrinello M (2006) Equilibrium free energies from nonequilibrium metadynamics. Phys Rev Lett 96(9):090601

    Article  PubMed  CAS  Google Scholar 

  22. Grubmüller H (1995) Predicting slow structural transitions in macromolecular systems: conformational flooding. Phys Rev E 52(3):2893

    Article  Google Scholar 

  23. Darve E, Pohorille A (2001) Calculating free energies using average force. J Chem Phys 115(20):9169–9183

    Article  CAS  Google Scholar 

  24. Banerjee V, Kar RK, Datta A, Parthasarathi K, Chatterjee S, Das KP, Bhunia A (2013) Use of a small peptide fragment as an inhibitor of insulin fibrillation process: a study by high and low resolution spectroscopy. PLoS One 8(8):e72318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kar RK, Brender JR, Ghosh A, Bhunia A (2018) Nonproductive binding modes as a prominent feature of Aβ40 Fiber elongation: insights from molecular dynamics simulation. J Chem Inf Model 58(8):1576–1586

    Article  CAS  PubMed  Google Scholar 

  26. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31(13):3381–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865. https://doi.org/10.1002/jcc.20945

    Article  CAS  PubMed  Google Scholar 

  28. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  29. Guixa-González R, Rodriguez-Espigares I, Ramírez-Anguita JM, Carrio-Gaspar P, Martinez-Seara H, Giorgino T, Selent J (2014) MEMBPLUGIN: studying membrane complexity in VMD. Bioinformatics 30(10):1478–1480

    Article  PubMed  CAS  Google Scholar 

  30. Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, Wei S, Buckner J, Jeong JC, Qi Y (2015) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput 12(1):405–413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lee E, Jeong K-W, Lee J, Shin A, Kim J-K, Lee J, Lee DG, Kim Y (2013) Structure-activity relationships of cecropin-like peptides and their interactions with phospholipid membrane. BMB Rep 46(5):282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Romoli O, Mukherjee S, Mohid SA, Dutta A, Montali A, Franzolin E, Brady D, Zito F, Bergantino E, Rampazzo C (2019) Enhanced silkworm Cecropin B antimicrobial activity against Pseudomonas aeruginosa from single amino acid variation. ACS Infect Dis 5(7):1200–1213

    Article  CAS  PubMed  Google Scholar 

  33. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725–738. https://doi.org/10.1038/nprot.2010.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using Rosetta. In: Methods in enzymology, vol 383. Elsevier, Amsterdam, pp 66–93

    Google Scholar 

  35. Kelm S, Shi J, Deane CM (2010) MEDELLER: homology-based coordinate generation for membrane proteins. Bioinformatics 26(22):2833–2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mukherjee S, Kar RK, Nanga RPR, Mroue KH, Ramamoorthy A, Bhunia A (2017) Accelerated molecular dynamics simulation analysis of MSI-594 in a lipid bilayer. Phys Chem Chem Phys 19(29):19289–19299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brooks BR, Brooks IIICL, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS (2007) Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob Agents Chemother 51(4):1398–1406. https://doi.org/10.1128/AAC.00925-06

    Article  CAS  PubMed  Google Scholar 

  39. Chapman D, Urbina J, Keough KM (1974) Biomembrane phase transitions studies of lipid-water systems using differential scanning calorimetry. J Biol Chem 249(8):2512–2521

    CAS  PubMed  Google Scholar 

  40. Wu EL, Cheng X, Jo S, Rui H, Song KC, Dávila-Contreras EM, Qi Y, Lee J, Monje-Galvan V, Venable RM (2014) CHARMM-GUI membrane builder toward realistic biological membrane simulations. J Comput Chem 35(27):1997–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mihailescu D, Smith JC (2000) Atomic detail peptide-membrane interactions: molecular dynamics simulation of gramicidin S in a DMPC bilayer. Biophys J 79(4):1718–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Bhunia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mukherjee, S., Kar, R.K., Bhunia, A. (2020). Characterization of Antimicrobial Peptide–Membrane Interaction Using All-Atom Molecular Dynamic Simulation. In: Sandrelli, F., Tettamanti, G. (eds) Immunity in Insects. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0259-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0259-1_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0258-4

  • Online ISBN: 978-1-0716-0259-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics