Skip to main content

Design of Hydrogen Fuel Cell Systems for Road Vehicles

  • Chapter
  • First Online:
Hydrogen Fuel Cells for Road Vehicles

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Hydrogen fuel cell systems (FCSs) represent very promising on-board power generators in hybrid electric vehicles, as they can effectively exploit both the environmental benefits of the fuel and the high efficiency of the electro-chemical device. In this chapter, FCSs based on PEM fuel cell stacks and fuelled by pure hydrogen are described taking into account the specific application in the transportation field. All sub-systems necessary to operate a PEM fuel cell stack (reactant feeding, water and thermal fluxes management) are detailed, evidencing the main design issues to be defined for a reliable working in conditions compatible with vehicular requirements. The role of the auxiliary components in reducing the stack efficiency and dynamic performance of the whole system is discussed, while a brief discussion about expected costs of FCS concludes this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bowers BJ, Zhao JL, Ruffo M, Khan R, Dattatraya D, Dushmann N, Beziat JC, Boudjemaa F (2007) Onboard fuel processor for PEM fuel cell vehicles. Int J Hydrogen Energ 32:1437–1442

    Article  Google Scholar 

  2. Mench MM (2008) Fuel cell engines. Wiley, Hoboken, NJ

    Book  Google Scholar 

  3. Von Helmolt R, Eberle U (2007) Fuel cell vehicle: status 2007. J Power Sources 165:833–843

    Article  Google Scholar 

  4. Larminie J, Dicks A (2000) Fuel cell systems explained. Wiley, Chichester

    Google Scholar 

  5. Ahluwalia RK, Wang X (2007) Buildup of nitrogen in direct hydrogen polymer-electrolyte fuel cell stacks. J Power Sources 171:63–71

    Article  Google Scholar 

  6. Corbo P, Migliardini F, Veneri O (2007) Performance investigation of 2.4 kW PEM fuel cell stack in vehicles. Int J Hydrogen Energ 32:4340–4349

    Article  Google Scholar 

  7. Sasaki H, Soga T, Yatake T, Kano A (2002) Development of 30 kW class PEFC system with pure hydrogen fuel. FCDIC Fuel Cell Symp Proc 9:117–121

    Google Scholar 

  8. Rodatz P, Buchi F, Onder C, Guzzella L (2004) Operational aspects of a large PEFC stack under practical conditions. J Power Sources 128:208–217

    Article  Google Scholar 

  9. Kima M, Sohna YJ, Choa CW, Lee WY, Kim CS (2008) Customized design for the ejector to recirculate a humidified hydrogen fuel in a submarine PEMFC. J Power Sources 176(2):529–533

    Article  Google Scholar 

  10. Barbir F, Gorgun H (2007) Electrochemical hydrogen pump for recirculation of hydrogen in a fuel cell stack. J Appl Electrochem 37:359–365

    Article  Google Scholar 

  11. Li PW, Zhang T, Wang QM, Schafer L, Chyu MK (2003) The performance of PEM fuel cells fed with oxygen through the free-convention mode. J Power Sources 114:63–69

    Article  Google Scholar 

  12. Corbo P, Migliardini F, Veneri O (2007) Experimental analysis and management issues of a hydrogen fuel cell system for stationary and mobile application. Energ Convers Manage 48:2365–2374

    Article  Google Scholar 

  13. Corbo P, Corcione FE, Migliardini F, Veneri O (2006) Experimental assessment of energy-management strategies in fuel-cell propulsion systems. J Power Sources 157:799–808

    Article  Google Scholar 

  14. Tirnovan R, Giurgea S, Miraoui A, Cirrincione M (2008) Surrogate modelling of compressor characteristics for fuel-cell applications. Appl Energ 85:394–403

    Article  Google Scholar 

  15. Ahluwalia RK, Wang X (2008) Fuel cell systems for transportation: status and trends. J Power Sources 177:167–176

    Article  Google Scholar 

  16. Yuanyang Z, Liansheng L, Jiang S, Wei Z, Pengcheng S (2003) Research on oil-free air scroll compressor with high speed in 30 kW fuel cell. Appl Therm Eng 23:593–603

    Article  Google Scholar 

  17. Zhao Y, Li L, Wu H, Shu P (2005) Theoretical and experimental studies of water injection scroll compressor in automotive fuel cell systems. Energ Convers Manage 46:1379–1392

    Article  Google Scholar 

  18. Mc Taggart P (2004) Development of a hybrid compressor/expander module for automotive fuel cell applications. Final Technical Report for DOE Contract DE-FC36-01AL67603

    Google Scholar 

  19. Jianfeng L, Huagen W, Bingming W, Ziwen X, Pengcheng S (2009) Research on the performance of water-injection twin screw compressor. Appl Therm Eng 29:3401–3408

    Article  Google Scholar 

  20. Hussain MM, Baschuk JJ, Li X, Dincer I (2005) Thermodynamic analysis of a PEM fuel cell power system. Int J Therm Sci 44:903–911

    Article  Google Scholar 

  21. Kandlikar SG, Lu Z (2009) Thermal management issues in a PEMFC stack–A brief review of current status. Appl Thermal Eng 29:1276–1280

    Article  Google Scholar 

  22. Ahn JW, Choe SY (2008) Coolant controls of a PEM fuel cell system. J Power Sources 179:252–264

    Article  Google Scholar 

  23. Bao C, Ouyang M, Yi B (2006) Analysis of the water and thermal management in proton exchange membrane fuel cell systems. Int J Hydrogen Energ 31:1040–1057

    Article  Google Scholar 

  24. Ciureanu M (2004) Effects of Nafion dehydration in PEM fuel cells. J Appl Electrochem 34:705–714

    Article  Google Scholar 

  25. Weng FB, Jou BS, Li CW, Su A, Chan SH (2008) The effect of low humidity on the uniformity and stability of segmented PEM fuel cells. J Power Sources 181:251–258

    Article  Google Scholar 

  26. Park YH, Caton JA (2008) Development of a PEM stack and performance analysis including the effects of water content in the membrane and cooling method. J Power Sources 179:584–591

    Article  Google Scholar 

  27. Andreaus B, Scherer GG (2004) Proton-conducting polymer membranes in fuel cells—humidification aspects. Solid State Ionics 168:311–320

    Article  Google Scholar 

  28. Karimi G, Jafarpour F, Li X (2009) Characterization of flooding and two-phase flow in polymer electrolyte membrane fuel cell stacks. J Power Sources 187:156–164

    Article  Google Scholar 

  29. Huizing R, Fowler M, Mérida W, dean J (2008) Design methodology for membrane based plate-and-frame fuel cell humidifiers. J Power Sources 180:265–275

    Article  Google Scholar 

  30. Büchi FN, Srinivasan S (1997) Operating PEMFC fuel cells without external humidification of the reactant gases—fundamental aspects. J Electrochem Soc 144:2767–2772

    Article  Google Scholar 

  31. Jung SH, Kim SL, Kim MS, Park Y, Lim TW (2007) Experimental study of gas humidification with injectors for automotive PEM fuel cell systems. J Power Sources 170:324–333

    Article  Google Scholar 

  32. Wood D, Yi JS, Nguyen TV (1998) Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells. Electrochim Acta 43:3795–3809

    Article  Google Scholar 

  33. Sun H, Zhang G, Guo LJ, Dehua S, Liu H (2007) Effects of humidification temperatures on local current characteristics in a PEM fuel cell. J Power Sources 168:400–407

    Article  Google Scholar 

  34. Park SK, Cho EA, Oh IH (2005) Characteristics of membrane humidifiers for polymer electrolyte membrane fuel cells. Korean J Chem Eng 22:877–881

    Article  Google Scholar 

  35. Chen D, Li W, Peng H (2008) An experimental study and model validation of a membrane humidifier for PEM fuel cell humidification control. J Power Sources 180:461–467

    Article  Google Scholar 

  36. Hoogers G (2003) Fuel cell technology handbook. CRC Press, Boca Raton, FL

    Google Scholar 

  37. Vitale NG, Jones DO (2000) U.S. patent US6,066,408,2000

    Google Scholar 

  38. Hogarth WHJ, benzinger JB (2006) Operation of polymer electrolyte membrane fuel cells with dry feeds: design and operating strategies. J Power Sources 159:968–978

    Article  Google Scholar 

  39. Liu F, Yi B, Xing D, Yu J, Hou Z, Fu Y (2003) Development of novel self-humidifying composite membranes for fuel cells. J Power Sources 124:81–89

    Article  Google Scholar 

  40. Hussain MM, Dincer I, Li X (2007) A preliminary life cycle assessment of PEM fuel cell powered automobiles. Appl Therm Eng 27:2294–2299

    Article  Google Scholar 

  41. Granovskii M, Dincer I, Rosen MA (2006) Life cycle assessment of hydrogen fuel cell and gasoline vehicles. Int J Hydrogen Energ 31:337–352

    Article  Google Scholar 

  42. Wagner U, Eckl R, Tzscheutschler P (2006) Energetic life cycle assessment of fuel cell powertrain systems and alternative fuels in Germany. Energ J 31:3062–3075

    Article  Google Scholar 

  43. Barbir F (2005) Fuel cells theory and practice. Elsevier, Burlington, MA

    Google Scholar 

  44. Pei P, Ouyang M, Lu Q, Huang H, Li X (2004) Testing of an automotive fuel cell system. Int J Hydrogen Energ 29:1001–1007

    Article  Google Scholar 

  45. Ahluwalia RK, Wang X (2005) Direct hydrogen fuel cell systems for hybrid vehicles. J Power Sources 139:152–164

    Article  Google Scholar 

  46. Corbo P, Migliardini F, Veneri O (2009) PEFC stacks as power sources for hybrid propulsion systems. Int J Hydrogen Energ 34:4635–4644

    Article  Google Scholar 

  47. Wishart J, Dong Z, Secanell M (2006) Optimization of a PEM fuel cell system based on empirical data and a generalized electrochemical semi-empirical model. J Power Sources 161:1041–1055

    Article  Google Scholar 

  48. Philipps F, Simons G, Schiefer K (2006) Dynamic investigation of PEFC stacks in interaction with the air supply system. J Power Sources 154:412–419

    Article  Google Scholar 

  49. Corbo P, Migliardini F, Veneri O (2008) Experimental analysis of a 20 kWe PEM fuel cell system in dynamic conditions representative of automotive applications. Energ Convers Manage 49:2688–2697

    Article  Google Scholar 

  50. Zhao H, Burke AF (2009) Optimization of fuel cell system operating conditions for fuel cell vehicles. J Power Sources 186:408–416

    Article  Google Scholar 

  51. Ahluwalia RK, Wang X (2006) Rapid self-start of polymer electrolyte fuel cell stacks from subfreezing temperatures. J Power Sources 162:502–512

    Article  Google Scholar 

  52. Jiao K, Li X (2009) Three-dimensional multiphase modeling of cold start processes in polymer electrolyte membrane fuel cells. Electrochim Acta 54:6876–6891

    Article  Google Scholar 

  53. Bar-On I, Kirchain R, Roth R (2002) Technical cost analysis for PEM fuel cells. J Power Sources 109:71–75

    Article  Google Scholar 

  54. Mert SO, Dincer I, Ozcelik Z (2007) Exergoeconomic analysis of a vehicular PEM fuel cell system. J Power Sources 165:244–252

    Article  Google Scholar 

  55. Qi Z, Kaufman A (2003) Low Pt loading high performance cathodes for PEM fuel cells. J Power Sources 113:37–43

    Article  Google Scholar 

  56. Zeis R, Mathur A, Fritz G, Lee J, Erlebacher J (2007) Platinum-plated nanoporous gold: an efficient, low Pt loading electrocatalyst for PEM fuel cells. J Power Sources 165:65–72

    Article  Google Scholar 

  57. Wu H, Wexler D, Wang G (2009) PtxNi alloy nanoparticles as cathode catalyst for PEM fuel cells with enhanced catalytic activity. J Alloy Compd 488:195–198

    Article  Google Scholar 

  58. Ramaswamy N, Arruda TM, Wen W, Hakim N, Saha M, Gullà A, Mukerjee S (2009) Enhanced activity and interfacial durability study of ultra low Pt based electrocatalysts prepared by ion beam assisted deposition (IBAD) method. Electrochim Acta 54:6756–6766

    Article  Google Scholar 

  59. Wu J, Yuan XZ, Martin JJ, Wang H, Zhang J, Shen J, Wu S, Merida W (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184:104–119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Corbo .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Corbo, P., Migliardini, F., Veneri, O. (2011). Design of Hydrogen Fuel Cell Systems for Road Vehicles. In: Hydrogen Fuel Cells for Road Vehicles. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-0-85729-136-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-136-3_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-135-6

  • Online ISBN: 978-0-85729-136-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics