Skip to main content

Hydrogen Fuel Cell in Vehicle Propulsion: Performance, Efficiency, and Challenge

  • Chapter
  • First Online:
Energy Efficiency in Mobility Systems

Abstract

This chapter provides comprehensive review on the current development of polymer electrolyte membrane fuel cell (PEMFC) in automotive application to assist further development of hydrogen fuel cell and expedite its wide adoption on a commercial scale. Special attention is devoted to the performance and efficiency of PEMFC especially on vehicular application and key issues hindering further development of PEMFC to achieve its commercialization stage. Subsequently, various mitigation strategies proposed to address the aforementioned issues are outlined and discussed. Lastly, further research and development needs of the field are highlighted and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Kojima, K. Fukazawa, Current status and future outlook of fuel cell vehicle development in Toyota. Meet. Abstr. MA2015-02(37), 1310 (2015)

    Google Scholar 

  2. T. Yoshida, K. Kojima, Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. Electrochem. Soc. Interface 24(2), 45–49 (2015)

    Article  Google Scholar 

  3. T. Suzuki, Fuel cell stack technology of Toyota. Meet. Abstr. MA2016-02(38), 2560 (2016)

    Google Scholar 

  4. S. Nistor, S. Dave, Z. Fan, M. Sooriyabandara, Technical and economic analysis of hydrogen refuelling. Appl. Energy 167, 211–220 (2016)

    Article  Google Scholar 

  5. J.C. Kurnia, A.P. Sasmito, T. Shamim, Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated driving cycle conditions. Appl. Energy 206, 751–764 (2017)

    Article  Google Scholar 

  6. S. Philips, Japan is betting big on the future of hydrogen cars. NPR.org. Available: https://www.npr.org/2019/03/18/700877189/japan-is-betting-big-on-the-future-of-hydrogen-cars. Accessed 21 Mar 2019

  7. N. Sulaiman, M.A. Hannan, A. Mohamed, E.H. Majlan, W.R. Wan Daud, A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges. Renew. Sustain. Energy Rev. 52, 802–814 (2015)

    Article  Google Scholar 

  8. C. Santoro, C. Arbizzani, B. Erable, I. Ieropoulos, Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 356, 225–244 (2017)

    Article  Google Scholar 

  9. K. Sopian, W.R. Wan Daud,“Challenges and future developments in proton exchange membrane fuel cells. Renew. Energy 31(5), 719–727 (2006)

    Article  Google Scholar 

  10. A.P. Sasmito, Modeling of Transport Phenomena in Polymer Electrolyte Fuel Cell Stacks: Thermal, Water, and Gas Management. Thesis, National University of Singapore, 2010

    Google Scholar 

  11. Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88(4), 981–1007 (2011)

    Article  Google Scholar 

  12. P. Koski, L.C. Pérez, J. Ihonen, Comparing anode gas recirculation with hydrogen purge and bleed in a novel PEMFC laboratory test cell configuration. Fuel Cells 15(3), 494–504 (2015)

    Article  Google Scholar 

  13. I.-S. Han, J. Jeong, H.K. Shin, PEM fuel-cell stack design for improved fuel utilization. Int. J. Hydrogen Energy 38(27), 11996–12006 (2013)

    Article  Google Scholar 

  14. J.-J. Hwang, Effect of hydrogen delivery schemes on fuel cell efficiency. J. Power Sources 239, 54–63 (2013)

    Article  Google Scholar 

  15. H.-Y. Lee, H.-C. Su, Y.-S. Chen, A gas management strategy for anode recirculation in a proton exchange membrane fuel cell. Int. J. Hydrogen Energy 43(7), 3803–3808 (2018)

    Article  Google Scholar 

  16. H. Marzougui, M. Amari, A. Kadri, F. Bacha, J. Ghouili, Energy management of fuel cell/battery/ultracapacitor in electrical hybrid vehicle. Int. J. Hydrogen Energy 42(13), 8857–8869 (2017)

    Article  Google Scholar 

  17. F. Barbir, PEM Fuel Cells: Theory and Practice (Academic Press, Cambridge, 2012)

    Google Scholar 

  18. T.V. Nguyen, A gas distributor design for proton-exchange-membrane fuel cells. J. Electrochem. Soc. 143(5), L103–L105 (1996)

    Article  Google Scholar 

  19. D.H. Jeon, S. Greenway, S. Shimpalee, J.W. Van Zee, The effect of serpentine flow-field designs on PEM fuel cell performance. Int. J. Hydrogen Energy 33(3), 1052–1066 (2008)

    Article  Google Scholar 

  20. S.M. Rahgoshay, A.A. Ranjbar, A. Ramiar, E. Alizadeh, Thermal investigation of a PEM fuel cell with cooling flow field. Energy 134, 61–73 (2017)

    Article  Google Scholar 

  21. A.P. Sasmito, J.C. Kurnia, A.S. Mujumdar, Numerical evaluation of various gas and coolant channel designs for high performance liquid-cooled proton exchange membrane fuel cell stacks. Energy 44(1), 278–291 (2012)

    Article  Google Scholar 

  22. Y. Kerkoub, A. Benzaoui, F. Haddad, Y.K. Ziari, Channel to rib width ratio influence with various flow field designs on performance of PEM fuel cell. Energy Convers. Manag. 174, 260–275 (2018)

    Article  Google Scholar 

  23. E. Afshari, M. Ziaei-Rad, Z. Shariati, A study on using metal foam as coolant fluid distributor in the polymer electrolyte membrane fuel cell. Int. J. Hydrogen Energy 41(3), 1902–1912 (2016)

    Article  Google Scholar 

  24. E. Alizadeh, S.M. Rahgoshay, M. Rahimi-Esbo, M. Khorshidian, S.H.M. Saadat, A novel cooling flow field design for polymer electrolyte membrane fuel cell stack. Int. J. Hydrogen Energy 41(20), 8525–8532 (2016)

    Article  Google Scholar 

  25. F.N. Büchi et al., On the efficiency of an advanced automotive fuel cell system. Fuel Cells 7(2), 159–164 (2007)

    Article  Google Scholar 

  26. J. Han, M. Kokkolaras, P.Y. Papalambros, Optimal design of hybrid fuel cell vehicles. J. Fuel Cell Sci. Technol. 5(4), 041014–041014 (2008)

    Article  Google Scholar 

  27. J. Bang, H.-S. Kim, D.-H. Lee, K. Min, Study on operating characteristics of fuel cell powered electric vehicle with different air feeding systems. J. Mech. Sci. Technol. 22(8), 1602–1611 (2008)

    Article  Google Scholar 

  28. A. Gomez, A.P. Sasmito, T. Shamim, Investigation of the purging effect on a dead-end anode PEM fuel cell-powered vehicle during segments of a European driving cycle. Energy Convers. Manage. 106, 951–957 (2015)

    Article  Google Scholar 

  29. H. Al-Zeyoudi, A.P. Sasmito, T. Shamim, Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: case study of United Arab Emirates. Energy Convers. Manag. 105, 798–809 (2015)

    Article  Google Scholar 

  30. A. Fly, R.H. Thring, A comparison of evaporative and liquid cooling methods for fuel cell vehicles. Int. J. Hydrogen Energy 41(32), 14217–14229 (2016)

    Article  Google Scholar 

  31. D. Feroldi, M. Serra, J. Riera, Energy Management Strategies based on efficiency map for Fuel Cell Hybrid Vehicles. J. Power Sources 190(2), 387–401 (2009)

    Article  Google Scholar 

  32. D. Feroldi, M. Carignano, Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles. Appl. Energy 183, 645–658 (2016)

    Article  Google Scholar 

  33. C. Liu, L. Liu, Optimal power source sizing of fuel cell hybrid vehicles based on Pontryagin’s minimum principle. Int. J. Hydrogen Energy 40(26), 8454–8464 (2015)

    Article  Google Scholar 

  34. L. Xu, C.D. Mueller, J. Li, M. Ouyang, Z. Hu, Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles. Appl. Energy 157, 664–674 (2015)

    Article  Google Scholar 

  35. M.G. Carignano, R. Costa-Castelló, V. Roda, N.M. Nigro, S. Junco, D. Feroldi, Energy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand. J. Power Sources 360, 419–433 (2017)

    Article  Google Scholar 

  36. M. Li, X. Zhang, G. Li, A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis. Energy 94, 693–704 (2016)

    Article  Google Scholar 

  37. S. Williamson, M. Lukic, A. Emadi, Comprehensive drive train efficiency analysis of hybrid electric and fuel cell vehicles based on motor-controller efficiency modeling. IEEE Trans. Power Electron. 21(3), 730–740 (2006)

    Article  Google Scholar 

  38. A.C. Turkmen, S. Solmaz, C. Celik, Analysis of fuel cell vehicles with advisor software. Renew. Sustain. Energy Rev. 70, 1066–1071 (2017)

    Article  Google Scholar 

  39. K. Ettihir, M. Higuita Cano, L. Boulon, K. Agbossou, Design of an adaptive EMS for fuel cell vehicles. Intl. J. Hydrog. Energy 42(2), 1481–1489 (2017)

    Article  Google Scholar 

  40. S. Ahmadi, S.M.T. Bathaee, Multi-objective genetic optimization of the fuel cell hybrid vehicle supervisory system: fuzzy logic and operating mode control strategies. Int. J. Hydrogen Energy 40(36), 12512–12521 (2015)

    Article  Google Scholar 

  41. T. Fletcher, R. Thring, M. Watkinson, An energy management strategy to concurrently optimise fuel consumption & PEM fuel cell lifetime in a hybrid vehicle. Int. J. Hydrogen Energy 41(46), 21503–21515 (2016)

    Article  Google Scholar 

  42. M.M. Whiston, I.L. Azevedo, S. Litster, K.S. Whitefoot, C. Samaras, J.F. Whitacre, Expert assessments of the cost and expected future performance of proton exchange membrane fuel cells for vehicles. PNAS 116(11), 4899–4904 (2019)

    Article  Google Scholar 

  43. V. Yarlagadda et al., Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett. 3(3), 618–621 (2018)

    Article  Google Scholar 

  44. A. de Frank Bruijn, G.J.M. Janssen, PEM fuel cell materials: Costs, performance, and durability, in Fuel Cells and Hydrogen Production: A Volume in the Encyclopedia of Sustainability Science and Technology, 2nd Edition, ed. T.E. Lipman, A.Z. Weber (Springer, New York, 2019), pp. 195–234

    Google Scholar 

  45. J. Li et al., Fuel cell system degradation analysis of a Chinese plug-in hybrid fuel cell city bus. Int. J. Hydrogen Energy 41(34), 15295–15310 (2016)

    Article  Google Scholar 

  46. A. Burkert, Fuel cells—From euphoria to disillusionment. ATZ Worldw 121(4), 8–13 (2019)

    Article  Google Scholar 

  47. M. Li et al., Review on the research of hydrogen storage system fast refueling in fuel cell vehicle. Intl. J. Hydrogen Energy (2019)

    Google Scholar 

  48. S. Niaz, T. Manzoor, A.H. Pandith, Hydrogen storage: materials, methods and perspectives. Renew. Sustain. Energy Rev. 50, 457–469 (2015)

    Article  Google Scholar 

  49. M. Hirscher, Handbook of Hydrogen Storage: New Materials for Future Energy Storage (Wiley, Hoboken, 2010)

    Google Scholar 

  50. D. Zhu, D. Chabane, Y. Ait-Amirat, A. N’Diaye, A. Djerdir, Estimation of the state of charge of a hydride hydrogen tank for vehicle applications, in 2017 IEEE Vehicle Power and Propulsion Conference (VPPC) (2017), pp. 1–6

    Google Scholar 

  51. I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy 40(34), 11094–11111 (2015)

    Article  Google Scholar 

  52. A. Kongkanand, N.P. Subramanian, Y. Yu, Z. Liu, H. Igarashi, D.A. Muller, Achieving high-power PEM fuel cell performance with an ultralow-Pt-content core-shell catalyst. ACS Catal. 6(3), 1578–1583 (2016)

    Article  Google Scholar 

  53. L. An, T.S. Zhao, X.L. Zhou, X.H. Yan, C.Y. Jung, A low-cost, high-performance zinc–hydrogen peroxide fuel cell. J. Power Sources 275, 831–834 (2015)

    Article  Google Scholar 

  54. M.F. Ezzat, I. Dincer, Development, analysis and assessment of a fuel cell and solar photovoltaic system powered vehicle. Energy Convers. Manag. 129, 284–292 (2016)

    Article  Google Scholar 

  55. C. Lv, J. Zhang, Y. Li, Y. Yuan, Mechanism analysis and evaluation methodology of regenerative braking contribution to energy efficiency improvement of electrified vehicles. Energy Convers. Manag. 92, 469–482 (2015)

    Article  Google Scholar 

  56. H. Fathabadi, Fuel cell hybrid electric vehicle (FCHEV): Novel fuel cell/SC hybrid power generation system. Energy Convers. Manag. 156, 192–201 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jundika Candra Kurnia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurnia, J.C., Sasmito, A.P. (2020). Hydrogen Fuel Cell in Vehicle Propulsion: Performance, Efficiency, and Challenge. In: Sulaiman, S. (eds) Energy Efficiency in Mobility Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-0102-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0102-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0101-2

  • Online ISBN: 978-981-15-0102-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics