Skip to main content

Solar Disinfection of Water by TiO2 Photoassisted Processes: Physicochemical, Biological, and Engineering Aspects

  • Chapter
  • First Online:
Electrochemistry for the Environment

Abstract

In this chapter, an overview of photocatalytic bacterial inactivation is given together with recent relevant literature examples and references. The most important parameters influencing the process are classified in physicochemical, biological, and engineering aspects. Experiments carried out at laboratory and field scale are illustrated and discussed. Limitations, advantages, and drawbacks are pointed out. Sensitivity of bacteria to solar disinfection in the absence and presence of TiO2 can vary for each species of microorganism according to strain, stage of the culture, growth medium, initial bacterial load, and type of plating medium used for bacterial cultivation and counting. Physicochemical parameters and reactor design among others also influence the process. However, to comply with requirements in the disinfection systems, it is important to determine for each condition the length of the irradiation period or effective disinfection time (EDT) that ensures death of the bacteria and consequently the end of the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah, M., Low, G.K.C. and Mattheus, R.W. (1990) Effects of common inorganic anions on rates of photoctalytic degradation of organic carbon over illuminated titanium dioxide. J. Phys. Chem. 94, 6820–6825.

    Article  CAS  Google Scholar 

  • Amezaga-Madrid, P., Nevarez-Moorillon, G.V., Orrantia-Borunda, E. and Miki-Yoshida, M. (2002) Photoinduced bactericidal activity against Pseudomonas aeruginosa by TiO2 based thin films. FEMS Microbiol. Lett. 211, 183–188.

    Article  CAS  Google Scholar 

  • Armon, R., Laot, N., Narkis, N. and Neeman, I. (1998) Photocatalytic inactivation of different bacteria and bacteriophages in drinking water at different TiO2 concentration with or without exposure to O2. J. Adv. Oxid. Technol. 3, 145–150.

    CAS  Google Scholar 

  • Bahnemann, D., Cunningham, J., Fox, M.A., Pelizzetti, E., Pichat, P. and Serpone, N. (1994) Photocatalytic treatment of waters. Lewis Publishers, Boca Raton, FL.

    Google Scholar 

  • Bekbolet, M. (1997) Photocatalytic bactericidal activity of TiO2 in aqueous suspensions of Escherichia coli. Water Sci. Technol. 35, 95–100.

    CAS  Google Scholar 

  • Belháová, L., Krýsa, J., Geryk, J. and Jirkovský, J. (1999) Inactivation of microorganisms in a flow-through photoreactor with an immobilized TiO2 layer. J. Chem. Technol. Biotechnol. 74, 149–154.

    Article  Google Scholar 

  • Blake, D.M., Maness, P.C., Huang, Z., Wolfrum, E.J., Huang, J. and Jacoby, W.A. (1999) Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Separ. Purif. Methods 28, 1–50.

    Article  CAS  Google Scholar 

  • Brezova, V., Blazkova, A., Borosova, E., Ceppan, M. and Fiala, R. (1995) The influence of dissolved metal ions on the photocatalytic degradation of phenol in aqueous TiO2 suspensions. J. Mol. Catal. A: Chem. 98, 109–116.

    Article  CAS  Google Scholar 

  • Britt, A.B. (1996) DNA damage and repair in plants. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 47, 75–100.

    Article  CAS  Google Scholar 

  • Butterfield, I.M., Christensen, P.A., Curtis, T.P. and Gunlazuardi, J. (1997) Water disinfection using an immobilised titanium dioxide film in a photochemical reactor with electric field enhancement. Water Res. 31, 675–677.

    Article  CAS  Google Scholar 

  • Chen, H.Y., Zahraa, O. and Bouchy, M. (1997) Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO2 by inorganic ions. J. Photochem. Photobiol. A: Chem. 108, 37–44.

    Article  CAS  Google Scholar 

  • Child, M., Strike, P., Pickup, R. and Edwards, C. (2002) Salmonella typhimurium displays cyclical patterns of sensitivity to UV-C killing during prolonged incubation in the stationary phase of growth. FEMS Microbiol. Lett. 213, 81–85.

    Article  CAS  Google Scholar 

  • Christensen, P.A., Curtis, T.P., Egerton, T.A., Kosa, S.A.M. and Tinlin, J.R. (2003) Photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide. Appl. Catal. B: Environ. 41, 371–386.

    CAS  Google Scholar 

  • Christensen, P.A., Egerton, T.A., Kosa, S.A.M., Tinlin, J.R. and Scott, K. (2005) The photoelectrocatalytic oxidation of aqueous nitrophenol using a novel reactor. J. Appl. Electrochem. 35, 683–692.

    Article  CAS  Google Scholar 

  • Cooper, W.J., Cadavid, E., Nickelsen, M.G., Lin, K.J., Kurucz, C.N. and Waite, T.D. (1993) Removing THMS from drinking-water using high-energy electron-beam irradiation. J. Am. Water Work Assoc. 85, 106–112.

    Google Scholar 

  • Crap O., Huisman, C.L. and Reller, A. (2004) Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32, 33–177.

    Article  Google Scholar 

  • Dhananjeyan, M.R., Mielczarski, E., Thampi, R.K., Buffat, P., Bensimon, M., Kulik, J., Mielczarski, J. and Kiwi, J. (2001) Photodynamics and surface characterization of TiO2 and Fe2O3 photocatalysts immobilized on modified polyethylene films. J. Phys. Chem. B 105, 12046–12055.

    Article  CAS  Google Scholar 

  • Duffy, E.F., Al Touati, F., Kehoe, S.C., McLoughlin, O.A., Gill, L.W., Gernjak, W., Oller, I., Maldonado, M.I., Malato, S. and Cassidy, J. (2004) A novel TiO2-assisted solar photocatalytic batch-process disinfection reactor for the treatment of biological and chemical contaminants in domestic drinking water in developing countries. Solar Energy 77, 649–655.

    Article  CAS  Google Scholar 

  • Dunlop, P.S.M., Byrne, J.A., Manga, N. and Eggins, B.R. (2002) The photocatalytic removal of bacterial pollutants from drinking water. J. Photochem. Photobiol. A: Chem. 148, 355–363.

    Article  CAS  Google Scholar 

  • Epling, G.A. and Lin, C. (2002) Investigation of retardation effects on the titanium dioxide photodegradation system. Chemosphere 46, 937–944.

    Article  CAS  Google Scholar 

  • Fernandez, P., Blanco, J., Sichel, C. and Malato, S. (2005) Water disinfection by solar photocatalysis using compound parabolic collectors. Catal. Today 101, 345–352.

    Article  CAS  Google Scholar 

  • Gogniat, G., Thyssen, M., Denis, M., Pulgarin, C. and Dukan, S. (2006) The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity. FEMS Microbiol. Lett. 258, 18–24.

    Article  CAS  Google Scholar 

  • Guillard, C., Disdier, J., Monnet, C., Dussaud, J., Malato, S., Blanco, J., Maldonado, M.I. and Herrmann, J.-M. (2003a) Solar efficiency of a new deposited titania photocatalyst: Chlorophenol, pesticide and dye removal applications. Appl. Catal. B: Environ. 46, 319–332.

    Article  CAS  Google Scholar 

  • Guillard, C., Lachheb, H., Houas, A., Ksibi, M., Elaloui, E. and Herrmann, J.-M. (2003b) Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2. J. Photochem. Photobiol. A: Chem. 158, 27–36.

    Article  CAS  Google Scholar 

  • Gumy, D. (2006) Factors influencing photocatalytic drinking water detoxification and disinfection by suspended and fixed TiO2, PhD Thesis, EPFL 3586, p. 170.

    Google Scholar 

  • Gumy, D., Morais, C., Bowen, P., Pulgarin, C., Giraldo, S., Hajdu, R. and Kiwi, J. (2006a) Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: Influence of the isoelectric point. Appl. Catal. B: Environ. 63, 76–84.

    CAS  Google Scholar 

  • Gumy, D., Rincon, A.G., Hajdu, R. and Pulgarin, C. (2006b) Solar photocatalysis for detoxification and disinfection of water: Different types of suspended and fixed TiO2 catalysts study. Solar Energy 80, 1376–1381.

    Article  CAS  Google Scholar 

  • Hoffmann, M., Martin, S., Choi, W. and Bahnemann, D. (1995) Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96.

    Article  CAS  Google Scholar 

  • Hoigne, J. (1997) Inter-calibration of OH radical sources and water quality parameters. Water Sci. Technol. 35, 1–8.

    CAS  Google Scholar 

  • Hu, C., Yu, J.C., Hao, Z. and Wong, P.K. (2003) Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes. Appl. Catal. B: Environ. 46, 35–47.

    Article  CAS  Google Scholar 

  • Huang, N., Xiao, Z., Huang, D. and Yuan, C. (1998) Photochemical disinfection of Escherichia coli with a TiO2 colloid solution and a self-assembled TiO2 thin film. Supramol. Sci. 5, 559–564.

    Article  CAS  Google Scholar 

  • Huang, Z., Maness, P.C., Blake, D.M., Wolfrum, E.J., Smolinski, S.L. and Jacoby, W.A. (2000) Bactericidal mode of titanium dioxide photocatalysis. J. Photochem. Photobiol. A: Chem. 130, 163–170.

    Article  CAS  Google Scholar 

  • Ireland, J.C., Klostermann, P., Rice, E.W. and Clark, R.M. (1993) Inactivation of Escherichia coli by titanium-dioxide photocatalytic oxidation. Appl. Environ. Microbiol. 59, 1668–1670.

    CAS  Google Scholar 

  • Jacoby, W.A., Maness, P.C., Wolfrum, E.J., Blake, D.M. and Fennell, J.A. (1998) Mineralization of bacterial-cell mass on a photocatalytic surface in air. Environ. Sci. Technol. 32, 2650–2653.

    Article  CAS  Google Scholar 

  • Kadavy, D.R., Shaffer, J.J., Lott, S.E., Wolf, T.A., Bolton, C.E., Gallimore, W.H., Martin, E.L., Nickerson, K.W. and Kokjohn, T.A. (2000) Influence of infected cell growth state on bacteriophage reactivation levels. Appl. Environ. Microbiol. 66, 5206–5212.

    Article  CAS  Google Scholar 

  • Kashige, N., Kakita, Y., Nakashima, Y., Miake, F. and Watanabe, K. (2001) mechanism of the photocatalytic inactivation of lactobacillus case I Phage PL-1 by titania thin film. Curr. Microbiol. 42, 184–189.

    Article  CAS  Google Scholar 

  • Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K. and Fujishima, A. (1997) Photocatalytic bactericidal effect of TiO2 thin-films – Dynamic view of the active oxygen species responsible for the effect. J. Photochem. Photobiol. A: Chem. 106, 51–56.

    Article  CAS  Google Scholar 

  • Koizumi, Y. and Taya, M. (2002) Photocatalytic inactivation rate of phage MS2 in titanium dioxide suspensions containing various ionic species. Biotechnol. Lett. 24, 459–462.

    Article  CAS  Google Scholar 

  • Kuhn, K.P., Chaberny, I.F., Massholder, K., Stickler, M., Benz, V.W., Sonntag, H.-G. and Erdinger, L. (2003) Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere 53, 71–77.

    Article  CAS  Google Scholar 

  • Lee, S., Nishida, K., Otaki, M. and Ohgaki, S. (1997) Photocatalytic inactivation of phage Q-beta by immobilized titanium-dioxide mediated photocatalyst. Water Sci. Technol. 35, 101–106.

    CAS  Google Scholar 

  • Legrini, O., Oliveros, E. and Braun, M.A. (1993) Photochemical processes for water treatment. Chem. Rev. 93, 671–698.

    Article  CAS  Google Scholar 

  • Lewis, C.K. and Burt Maxcy, R. (1984) Effect of physiological age on radiation resistance of some bacteria that are highly radiation resistant. Appl. Environ. Microbiol. 47, 915–918.

    Google Scholar 

  • Lonnenn, J., Kilvington, S., Kehoe, S.C., Touati, F.A. and McGuigan, K.G. (2005) Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water. Water Res. 39, 877–883.

    Article  Google Scholar 

  • Maness, P.-C., Smolinski, S., Blake, D.M., Huang, Z., Wolfrum, E.J. and Jacoby, W.A. (1999) Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism. Appl. Environ. Microbiol. 65, 4094–4098.

    CAS  Google Scholar 

  • Matsunaga, T., Tomoda, R., Nakajima, T. and Wake, H. (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol. Lett. 29, 211–214.

    Article  CAS  Google Scholar 

  • Matsunaga, T., Tomoda, T., Nakajima, T., Nakamura, N. and Komine, T. (1988) Continuous-sterilization system that uses photosemiconductor powders. Appl. Environ. Microbiol. 54, 1330–1333.

    CAS  Google Scholar 

  • McLoughlin, O.A., Fernández, P., Gernjak, W., Malato, S. and Gilla, L.W. (2004) Photocatalytic disinfection of water using low cost compound parabolic collectors. Solar Energy 77, 625–633.

    Article  CAS  Google Scholar 

  • Mercalf, E. (2005) Waste water engineering treatment and reuse. McGraw Hill, New York, NY.

    Google Scholar 

  • Mest’ankova, H., Mailhot, G., Pilichowski, J.-F., Krysa, J., Jirkovsky, J.x.r. and Bolte, M. (2004) Mineralisation of monuron photoinduced by Fe(III) in aqueous solution. Chemosphere 57, 1307–1315.

    Google Scholar 

  • Morton, A.R. and Haynes, R.H. (1969) Changes in the ultraviolet sensitivity of Escherichia coli during growth in bath cultures. J. Bacteriol. 97, 1379–1385.

    CAS  Google Scholar 

  • Murno, P.M., Flatatau, G.N., Clement, L.R. and Gauthier, M.L. (1995) Influence of the RpoS (KatF) sigma factor on maintenance of viability and culturability of Escherichia coli and Salmonella typhimurium in seawater. Appl. Environ. Microbiol. 61, 1853–1858.

    Google Scholar 

  • Nakayama, T., Wake, H., Ozawa, K., Kodama, H., Nakamura, N. and Matsunaga, T. (1998) Use of a titanium nitride for electrochemical inactivation of marine bacteria. Environ. Sci. Technol. 32, 798–801.

    Article  CAS  Google Scholar 

  • Ollis, D., Pelizzetti, E. and Serpone, N. (1991) Photocatalysed destruction of water contaminants. Environ. Sci. Technol. 25, 1522–1529.

    Article  CAS  Google Scholar 

  • Pham, H.N., McDowell, T. and Wilkins, E. (1995) Photocatalytically mediated disinfection of water using TiO2 as a catalyst and spore-forming Bacillus-Pumilus as a model. J. Environ. Sci. Health A Environ. 30, 627–636.

    Article  Google Scholar 

  • Pizarro, P., Guillard, C., Perolb, N. and Herrmann, J.M. (2005) Photocatalytic degradation of Imazapyr in water: Comparison of activities of different supported and unsupported TiO2-based catalysts. Catal. Today 101, 211–218.

    Article  CAS  Google Scholar 

  • Poulina, A. and Mikhailova, S.S. (1995) Influence of impurities on adsorption interaction between surfactants and titanium dioxide. Colloid J. 57, 116–117.

    Google Scholar 

  • Reed, R.H. (2004) The inactivation of microbes by sunlight: Solar disinfection as a water treatment process. Adv. Appl. Microbiol. 54, 333–365.

    Article  CAS  Google Scholar 

  • Reed, R.H., Mani, S.K. and Meyer, V. (2000) Solar photo-oxidative disinfection of drinking water: Preliminary field observations. Lett. Appl. Microbiol. 30, 432–436.

    Article  CAS  Google Scholar 

  • Rincón, A.G. and Pulgarin, C. (2003) Photocatalytical inactivation of E. coli: Effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration. Appl. Catal. B: Environ. 44, 263–284.

    Google Scholar 

  • Rincón, A.G. and Pulgarin, C. (2004a) Field solar E.coli inactivation in the absence and presence of TiO2: Is UV solar dose an appropriate parameter for standarization of water solar disinfection?. Solar Energy 77, 635–648.

    Article  Google Scholar 

  • Rincón, A.G. and Pulgarin, C. (2004b) Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: Post irradiation events in the dark and assessment of the effective disinfection time. Appl. Catal. B: Environ. 49, 99–112.

    Article  Google Scholar 

  • Rincón, A.G. and Pulgarin, C. (2004c) Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2: Implications in solar water disinfection. Appl. Catal. B. Environ. 51, 283–302.

    Article  Google Scholar 

  • Rincón, A.G. and Pulgarin, C. (2005) Use of coaxial photocatalytic reactor (CAPHORE) in the TiO2 photo-assisted treatment of mixed E. coli and Bacillus sp. and bacterial community present in wastewater. Catal. Today 101, 331–344.

    Article  Google Scholar 

  • Rincón, A.G. and Pulgarin, C. (2006) Comparative evaluation of Fe+ 3 and TiO2 photoassisted processes in solar photocatalytic disinfection of water. Appl. Catal. B: Environ. 63, 222–231.

    Article  Google Scholar 

  • Rincón, A.G. and Pulgarin, C. (2007a) Fe3+ and TiO2 solar-light-assisted inactivation of E. coli at field scale. Implications in solar disinfection at low temperature of large quantities of water. Catal. Today 122, 128–136

    Article  Google Scholar 

  • Rincón, A.G. and Pulgarin, C. (2007b) Solar photolytic and photocatalytic disinfection of water at laboratory and field scale. Effect of the chemical composition of water and study of the postirradiation events. Solar Energy Eng. 129, 100–110.

    Google Scholar 

  • Rincón, A.G., and Pulgarin C. (2007c) Absence of E. coli regrowth after Fe3 + and TiO2 solar photoassisted disinfection of water in CPC solar photoreactor. Catal. Today. 124, 204–214.

    Article  Google Scholar 

  • Rincón, A.G., Pulgarin, C., Adler, N. and Peringer, P. (2001) Interaction between E. coli inactivation and DBP-precursors – dihydroxybenzene isomers – in the photocatalytic process of drinking-water disinfection with TiO2. J. Photochem. Photobiol. A: Chem. 139, 233–241.

    Google Scholar 

  • Saito, T., Iwase, T., Horie, J. and Morioka, T. (1992) Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans Streptococci. J. Photochem. Photobiol. B: Biol. 14, 369–379.

    Article  CAS  Google Scholar 

  • Salih, F.M. (2002) Enhancement of solar inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. J. Appl. Microbiol. 92, 920–926.

    Article  CAS  Google Scholar 

  • Serpone, N., Salinaro, A., Horikoshi, S. and Hidaka, H. (2006) Beneficial effects of photoinactive titanium dioxide specimens on plasmid DNA, human cells and yeast cells exposed to UVA/UV B simulated sunlight. J. Photochem. Photobiol. A: Chem. 179, 200–212.

    Article  CAS  Google Scholar 

  • Sichel, C., de Cara M., Tello, J., Blanco, J. and Fernandez-Ibanez, P. (2007a). Solar photocatalytic disinfection of agricultural pathogenic fungi: Fusarium species. Appl. Catal. B: Environ. 74, 152–160.

    Article  CAS  Google Scholar 

  • Sichel, C., Tello, J., de Cara, M. and Fernandez-Ibanez P. (2007b) Effect of UV solar intensity and dose on the photocatalytic disinfection of bacteria and fungi. Catal. Today. 129, 152–60.

    Article  CAS  Google Scholar 

  • Sichel, C., Blanco, J., Malato, S. and Fernández-Ibáñez, P. (2007c) Effects of experimental conditions on E. coli survival during solar photocatalytic water disinfection. J. Photochem. Photobiol. A: Chem. 189, 239–246.

    CAS  Google Scholar 

  • Sjogren, J.C. and Sierka, R.A. (1994) Inactivation of phage Ms-2 by iron-aided titanium-dioxide photocatalysis. Appl. Environ. Microbiol. 60, 344–347.

    CAS  Google Scholar 

  • Sommer, R., Haider, T., Cabaj, A., Pribil, W. and Lhotsky, M. (1998) Time dose reciprocity in UV disinfection of water. Water Sci. Technol. 38, 145–150.

    CAS  Google Scholar 

  • Srinivasan C., and Somasundaram, N. (2003) Bactericidal and detoxification effects of irradiated semiconductor catalyst TiO2. Curr. Sci. 85, 1431–1438.

    CAS  Google Scholar 

  • Sunada, K., Kikuchi, Y., Hashimoto, K. and Fujishima, A. (1998) Bactericidal and detoxification effects of TiO2 thin-film photocatalysts. Environ. Sci. Technol. 32, 726–728.

    Article  CAS  Google Scholar 

  • Sunada, K., Watanabe, T. and Hashimoto, K. (2003) Studies on photokilling of bacteria on TiO2 thin film. J. Photochem. Photobiol. A: Chem. 156, 227–233.

    Article  CAS  Google Scholar 

  • Wei, C., Lin, W.Y., Zainal, Z., Williams, N.E., Zhu, K., Kruzic, A.P., Smith, R.L. and Rajeshwar, K. (1994) Bactericidal activity of TiO2 photocatalyst in aqueous-media – Toward a solar-assisted water disinfection system. Environ. Sci. Technol. 28, 934–938.

    Article  CAS  Google Scholar 

  • Whitelam, G.C. and Codd, G.A. (1985) Damaging effects of light on microorganisms. In: Herbert, R.A. and Codd, G.A. (Eds.) Microbes in extreme environments. Academic, London, pp. 129–169.

    Google Scholar 

  • Wolfrum, E.J., Huang, J., Blake, D.M., Maness, P.-C., Huang, Z., Fiest, J. and Jacoby, W.A. (2002) Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces. Environ. Sci. Technol. 36, 3412–3419.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Guiovana Rincón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rincón, A.G., Pulgarin, C. (2010). Solar Disinfection of Water by TiO2 Photoassisted Processes: Physicochemical, Biological, and Engineering Aspects. In: Comninellis, C., Chen, G. (eds) Electrochemistry for the Environment. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68318-8_17

Download citation

Publish with us

Policies and ethics