Skip to main content

Underwater Sound Generation and Acoustic Reception in Fishes with Some Notes on Frogs

  • Chapter
Sensory Processing in Aquatic Environments

Abstract

Fishes have evolved diverse mechanisms to generate sound. These include rubbing of bony elements against each other (stridulation), vibrating swim bladders or pectoral girdles via rapidly contracting muscles, and plucking enhanced tendons of pectoral fins. While stridulatory or plucking mechanisms produce wideband pulsed sounds with frequencies extending up to several kHz, vibration of the swim bladder results in lowfrequency (<1 kHz) tonal, often harmonic, signals. In shallow waters, where most of the vocalizing fishes (and frogs) live, sound propagation is very much limited below a certain cutoff frequency. This implies that the communication range is restricted to no more than a few meters, quite different therefore FROM open ocean marine mammals, whose sounds travel hundreds of kilometers.

Fishes have also evolved a large diversity of hearing abilities. While most species known as hearing generalists are restricted to detecting low frequencies below 500Hz and the particle motion component of sound, other species have morphological structures such as Weberian ossicles that effectively couple the inner ear to air-filled vibrating chambers within the body, thus allowing sound pressure detection. These accessory hearing structures enable such hearing specialists (otophysines, mormyrids, and anabantoids) to extend their hearing range up to several kHz. A correlation between auditory sensitivity and sound spectra is found in numerous species, although the distribution of sonic organs and hearing abilities among otophysans and other teleosts does not always support this pattern.

Hearing specializations are often characteristic of whole taxa, whereas sonic organs appear in a limited number of species within these taxa. Therefore, it is assumed that hearing specializations evolved much earlier.The major selective pressure influencing the evolution of hearing specializations among teleosts is most likely predator avoidance and/or prey detection in quiet freshwater habitats and to a lesser degree the optimization of acoustic communication.

A small number of frogs call and communicate acoustically underwater. The pipid Xenopus produces click-like signals that resemble those of numerous fish species. Interestingly, these signals are produced by a modified larynx. Similar to fishes, auditory sensitivity is apparently enhanced by coupling the ear to air-filled spaces such as the lung and the middle-ear cavity. Thus, it seems that fishes and frogs evolved similar mechanisms for sound production and detection in response to the physical limitations of their environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abu-Gideiri, J.B., and Nasr, D.H. (1973). Sound production by Synodontis schall (Bloch-Schneider). Hydrobiologia 43:415–428.

    Article  Google Scholar 

  • Aiken, R.B. (1985). Sound production by aquatic insects. Biol. Rev. 65:163–211.

    Article  Google Scholar 

  • Alexander, R.M.N. (1964). The structure of the Weberian apparatus in the Siluri. Proc. Zool. Soc. Lond. 142:419–440.

    Google Scholar 

  • Bader, R. (1937). Bau, Entwicklung und Funktion des akzessorischen Atmungsorgans der Labyrinthfische. Z. Wiss. Zool. 149:323–401.

    Google Scholar 

  • Ballantyne, P.K., and Colgan, P.W. (1978). Sound production during agonistic and reproductive behaviour in the pumpkinseed (Lepomis gibbosus), the bluegill (Lepomis macrochirus) and their hybrid sunfish. I. Context. Biol. Behav. 3:113–135.

    Google Scholar 

  • Barber, S.B., and Mowbray, W.H. (1956). Mechanism of sound production in the sculpin. Science 124:219–220.

    Article  PubMed  Google Scholar 

  • Bass, A.H. (1996). Shaping brain sexuality. Amer. Scientist 84:352–363.

    Google Scholar 

  • Bass, A.H., and Baker, R. (1991). Evolution of homologous vocal control traits. Brain Behav. Evol. 38:240–254.

    Article  PubMed  CAS  Google Scholar 

  • Bass, A.H., and Clark, C.W. (2002). The physical acoustics of underwater sound communication. In: Springer Handbook of Auditory Research (Simmons, A.M., Popper, A.N., and Fay, R.R., eds.). New York: Springer.

    Google Scholar 

  • Bass, A.H., and Marchaterre, M.A. (1989). Soundgenerating (sonic) motor system in a teleost fish (Porichthys notatus): Sexual polymorphism in the ultrastructure of myofibrils. J. Comp. Neurol. 286:141–153.

    Article  PubMed  CAS  Google Scholar 

  • Bass, A.H., Bodnar, D., and Marchaterre, M. (1999). Complementary explanation for existing phenotypes in an acoustic communication system. In: The Design of Animal Communication (Hauser, M.D., and Konishi, M., eds.), pp. 493–514. Cambridge: MIT Press.

    Google Scholar 

  • Blaxter, J.H.S., Denton, E.J., and Gray, J.A.B. (1981). Acousticolateralis system in clupeid fishes. In: Hearing and Sound Communication in Fishes (Tavolga, W.N., Popper, A.N., and Fay, R.R., eds.), pp. 39–56. New York: Springer.

    Google Scholar 

  • Boatright-Horowitz, S.S., Cheney, C.A., and Simmons, A.M. (1999). Atmospheric and underwater propagation of bullfrog vocalizations. Bioacoustics 9:257–280.

    Google Scholar 

  • Bodnar, D.A., and Bass, A.H. (1997). Temporal coding of concurrent acoustic signals in auditory midbrain. J. Neurosci. 17:7553–7564.

    PubMed  CAS  Google Scholar 

  • Bodnar, D.A., and Bass, A.H. (1999). A midbrain combinatorial code for temporal and spectral information in concurrent acoustic signals. J. Neurophysiol. 81:552–563.

    PubMed  CAS  Google Scholar 

  • Bodnar, D.A., and Bass, A.H. (2001). The coding of concurrent signals by the auditory midbrain: Effects of stimulus intensity and depth of modulation. J. Acoust. Soc. Am. 109:809–825.

    Article  PubMed  CAS  Google Scholar 

  • Brantley, R.K., and Bass, A.H. (1994). Alternative male spawning tactics and acoustic signals in the plainfin midshipman fish Porichthys notatus Girard (Teleostei, Batrachoididae). Ethology 96: 213–232.

    Article  Google Scholar 

  • Brantley, R.K., Marchaterre, M., and Bass, A.H. (1993). Androgen effects on vocal muscle structure in a teleost fish with interand intrasexual dimorphism, J. Morphol. 216:305–318.

    Article  PubMed  CAS  Google Scholar 

  • Bregman, A.S. (1990). Auditory Scene Analysis: The Perceptual Organisation of Sound. Cambridge: MIT Press.

    Google Scholar 

  • Canfield, J.G., and Eaton, R.C. (1990). Swim bladder acoustic pressure transduction initiates Mauthnermediated escape. Nature 347:760–762.

    Article  Google Scholar 

  • Capranica, R.C. (1976). Morphology and physiology of the auditory system. In: Frog Neurobiology (llina, R., and Precht, W., eds.),pp. 551–575. Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • Chranilov, N.S. (1927). Beiträge zur Kenntnis des Weber’schen Apparates der Ostariophysi 1. Vergleichend-anatomische Ãœbersicht der Knochenelemente des Weber’schen Apparates bei Cypriniformes. Zool. Jb. Anat. Ontog. 49:501–597.

    Google Scholar 

  • Christensen-Dalsgaard, J., Breithaupt, T., and Elepfandt, A. (1995). Underwater hearing in the clawed frog Xenopus leavis. Naturwissenschaften 77:135–137.

    Article  Google Scholar 

  • Coburn, M.M., and Grubach, P.G. (1998). Ontogeny of the Weberian Apparatus in the armored catfish Cory doras paleatus (Siluriformes: Callichthyidae). Copeia 1998(2):301–311.

    Article  Google Scholar 

  • Cohen, M.J., and Winn, H.E. (1967). Electrophysiological observation on hearing and sound production in the fish Porichthys notatus. J. Exp. Zool. 165:355–370.

    Article  PubMed  CAS  Google Scholar 

  • Connaughton, M.A., Taylor, M.H., and Fine, M.L. (2000). Effects of fish size and temperature on weakfish disturbance calls: implications for the mechanism of sound generation. J. Exp. Biol. 203:1503–1512.

    PubMed  CAS  Google Scholar 

  • Coombs, S., and Popper, A.N. (1979). Hearing differences among Hawaiian squirrelfish (family Holocentridae) related to differences in the peripheral auditory system. J. Comp. Physiol. 132:203–207.

    Article  Google Scholar 

  • Crawford, J.D. (1993). Central auditory neurophysiology of a sound-producing fish: The mesencephalon of Pollimyrus isidori (Mormyridae). J. Comp. Physiol. A. 172:139–152.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, J.D., and Huang, X. (1999). Communication signals and sound production mechanism of mormyrid electric fish. J. Exp. Biol. 202:1417–1426.

    PubMed  CAS  Google Scholar 

  • Crawford, ID., Hagedorn, M., and Hopkins, CD. (1986). Acoustic communication in an electric fish, Pollimyrus isidori (Mormyridae). J. Comp. Physiol. A. 159:297–310.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, J.D., Jacobs, P., and Benech, V. (1997). Sound production and reproductive ecology of strongly acoustic fish in Africa: Pollimyrus isidori, Mormyridae. Behaviour 134:1–49.

    Article  Google Scholar 

  • Dijkgraaf, S. (1941). Haben die Lautäußerungen der Elritze eine biologische Bedeutung? Zool. Anz. 136:103–106.

    Google Scholar 

  • Dufossé, M. (1874). Recherches sur les bruits et les sons expressifs que font entendre les poissons d’Europe et sur les organes producteurs de ces phenomenes acoustiques ainsi que sur les appareils de l’audition de plusiuers de ces animaux. Ann. Sc. Nat. 19, Art. No. 5.

    Google Scholar 

  • Edds-Walton, PL. (1997). Acoustic communication signals of mysticete whales. Bioacoustics 8:47–60.

    Google Scholar 

  • Fay, R.R. (1988). Hearing in Vertebrates: A Psychophysics Databook, Illinois Winnetka: Hill-Fay Associates.

    Google Scholar 

  • Fay, R.R. (1998). Auditory stream segregation in goldfish (Carassius auratus). Hear. Res. 120:69–76.

    Article  PubMed  CAS  Google Scholar 

  • Fine, M.L. (1978). Seasonal and geographical variation of mating call of the oyster toadfish, Opsanus tau L. Oecologia 36:45–57.

    Article  Google Scholar 

  • Fine, M.L. (1981). Mismatch between sound production and hearing in the oyster toadfish. In: Hearing and Sound Communication in Fishes (Tavolga, W.N., Popper, A.N., and Fay, R.R., eds.), pp. 257–263. New York: Springer.

    Google Scholar 

  • Fine, M.L., and Ladich, F. (in press). Sound production, spine locking, and related adaptations. In: Catfishes (Kapoor, B.G., Arratia, G., Chardon, M., and Diogo, R., eds.). New Delhi, India: Oxford and IBH Publishing.

    Google Scholar 

  • Fine, M.L., and Lenhardt, M.L. (1983). Shallow water propagation of the toadfish mating call. Comp. Biochem. Physiol. 76:225–231.

    Article  CAS  Google Scholar 

  • Fine, M.L., Burns, N.M., and Harris, T.M. (1990). Ontogeny and sexual dimorphism of sonic muscle in the oyster toadfish. Can. J. Zool. 8:1378–1381.

    Google Scholar 

  • Fine, M.L., Winn, H.E., and Olla, B.L. (1977). Communication in fishes. In: How Animals Communicate (Sebeok, T.A., ed.), pp. 472–518. Bloomington, IN: Indiana Univ. Press.

    Google Scholar 

  • Fine, M.L., King, C.B., Friel, J.P., Loesser, K.E., and Newton, S. (1999). Sound production and locking of the pectoral spine of the channel catfish. Amer. Fisher. Soc. Symp. 24:105–114.

    Google Scholar 

  • Fink, S.V., and Fink, W.L. (1996). Interrelationships of ostariophysan fishes. In: Interrelationships of Fishes (Stiassny, M.L.J., Pasenti, L.R., and Johnson, G.D., eds.), pp. 209–249. San Diego: Academic Press.

    Google Scholar 

  • Fish, M.P., and Mowbray, W.H. (1970). Sounds of Western North Atlantic Fishes. Baltimore: Johns Hopkins Press.

    Google Scholar 

  • Forrest, T.G., Miller, G.L., and Zagar, J.R. (1993). Sound propagation in shallow water: Implications for acoustic communication by aquatic animals. Bioacoustics 4:259–270.

    Google Scholar 

  • Gerald, J.W. (1971). Sound production in six species of sunfish (Centrarchidae). Evolution 25:75–87.

    Article  Google Scholar 

  • Hawkins, A.D. (1993). Underwater sound and fish behaviour. In: Behaviour of Teleost Fishes (Pitcher, T.J., ed.), pp. 129–169. London: Chapman & Hall.

    Google Scholar 

  • Hawkins, A.D., and Amorim, M.C.P. (2000). Spawning sounds of the male haddock, Melanogrammus aeglefinus. Environ. Biol. Fishes 59:29–41.

    Article  Google Scholar 

  • Hawkins, A.D., and Myrberg, A.A. (1983). Hearing and sound communication underwater. In: Bioacoustics: A Comparative Approach (Lewis, B., ed.), pp. 347–405. London: Academic Press.

    Google Scholar 

  • Hawkins, A.D., and Rasmussen, K.J. (1978). The calls of gadoid fish. J. Mar. Biol. Ass. U.K. 58:891–911.

    Google Scholar 

  • Henglmtiller, S.M., and Ladich, F (1999). Development of agonistic behaviour and vocalization in croaking gourami. J. Fish Biol. 54:380–395.

    Google Scholar 

  • Heyd, A., and Pfeiffer, W. (2000). Ãœber die Lauterzeugung der Welse (Siluroidei, Ostariophysi, Teleostei) und ihren Zusammenhang mit der Phylogenese und der Schreckreaktion. Rev. Suisse Zool. 107:165–211.

    Google Scholar 

  • Hoy, R.R. (1992). The evolution of hearing in insects as an adaptation to predation from bats. In: The Evolutionary Biology of Hearing (Webster, D.B., Fay, R.R., and Popper, A.N., eds.), pp. 115–129. New York: Springer.

    Google Scholar 

  • Ibara, R.M., Penny, L.T., Ebeling, A.W., Dykhuizen, Gv., and Cailliet, G. (1983). The mating call of the plainfin midshipman fish, Porichthys notatus. In: Predators and Prey in Fishes (Noakes, D.L.G., ed.), pp. 205–212. The Hague, Netherlands: Junk Publishers.

    Google Scholar 

  • Kaatz, I.M. (1999). The behavioral and morphological diversity of acoustic communication systems in a clade of tropical catfishes (Pisces: Siluriformes). PhD. dissertation. State University of New York, Syracuse.

    Google Scholar 

  • Kastberger, G. (1977). Der Trommelapparat der Doradiden (Siluriformes, Pisces). Zool. Jb. Physiol. 81:281–309.

    Google Scholar 

  • Kastberger, G. (1981a). Economy of sound production in piranhas (Serrasalminae, Characidae). I. Functional properties of sonic muscles. Zool. Jb. Physiol. 85:113–125.

    Google Scholar 

  • Kastberger, G. (1981b). Economy of sound production in piranhas (Serrasalminae, Characidae). II. Functional properties of sound emitter. Zool. Jb. Physiol. 85:393–411.

    Google Scholar 

  • Kelley, D.B., and Tobias, M.L. (1999). Vocal communication in Xenopus laevis. In: The Design of Animal Communication (Hauser, M.D., and Konishi, M., eds.),pp. 9–35, Cambridge: MIT Press.

    Google Scholar 

  • Kenyon, TN (1994). The significance of sound interception to males of the bicolor damselfish, Pomacentrus partitus. Environ. Biol. Fishes 40: 391–405.

    Article  Google Scholar 

  • Kratochvil, H. (1978). Der Bau des Lautapparates vom Knurrenden Gurami (Trichopsis vittatus Cuvier and Valenciennes) (Anabantidae, Belontiidae). Zoomorphologie 91:91–99.

    Article  Google Scholar 

  • Kratochvil, H. (1980). Geschlechtsdimorphismus beim Lautapparat des Knurrenden Zwerggurami Trichopsis pumilus Arnold (Anabantidae, Teleostei). Zoomorphologie 94:204–208.

    Article  Google Scholar 

  • Ladich, F. (1988). Sound production by the gudgeon, Gobio gobio L.: A common European freshwater fish (Cyprinidae, Teleostei). J. Fish. Biol. 32: 707–715.

    Article  Google Scholar 

  • Ladich, F. (1989). Sound production by the river bullhead Cottus gobio L. (Cottidae, Teleostei). J. Fish Biol. 35:531–538.

    Article  Google Scholar 

  • Ladich, F. (1997). Comparative analysis of swim bladder (drumming) and pectoral (stridulation) sounds in three families of catfishes. Bioacoustics 8:185–208.

    Google Scholar 

  • Ladich, F. (1999). Did auditory sensitivity and vocalization evolve independently in otophysan fishes? Brain Behav. Evol. 53:288–304.

    Article  PubMed  CAS  Google Scholar 

  • Ladich, F. (2000). Acoustic communication and the evolution of hearing in fishes. Phil. Trans. R. Soc. Lond. B. 355:1285–1288.

    Article  CAS  Google Scholar 

  • Ladich, F., and Bass, A.H. (1996). Sonic/vocalacousticolateralis pathways in teleost fishes: A transneuronal biocytin study in mochokid catfish. J. Comp. Neurol. 374:493–505.

    Article  PubMed  CAS  Google Scholar 

  • Ladich, F., and Bass, A.H. (1998). Sonic/vocal motor pathways in catfishes: Comparison with other teleosts. Brain Behav. Evol. 51:315–330.

    Article  PubMed  CAS  Google Scholar 

  • Ladich, F., and Bass, A.H. (in press). Audition in catfishes. In: Catfishes (Kapoor, B.G., Arratia, G., Chardon, M., and Diogo, R., eds.). New Delhi, India: Oxford and IBH Publishing.

    Google Scholar 

  • Ladich, F., and Kratochvil, H. (1989). Sound production by the marmoreal goby, Protherorhinus marmoratus (Pallas) (Gobiidae, Teleostei). Zool. Jb. Physiol. 93:501–504.

    Google Scholar 

  • Ladich, F., and Popper, A.N. (2001). Comparison of the inner ear ultrastructure between teleost fishes using different channels for communication. Hear. Res. 154:62–72.

    Article  PubMed  CAS  Google Scholar 

  • Ladich, F., and Tadler, A. (1988). Sound production in Polypterus (Osteichthyes: Polypteridae). Copeia 1988(4):1076–1077.

    Google Scholar 

  • Ladich, F., and Yan, H.Y. (1998). Correlation between auditory sensitivity and vocalization in anabantoid fishes. J. Comp. Physiol. A. 182:737–746.

    Article  PubMed  CAS  Google Scholar 

  • Ladich, F., Bischof, C., Schleinzer, G., and Fuchs, A. (1992). Intraand interspecific differences in agonistic vocalization in croaking gouramis (Genus: Trichopsis, Anabantoidei, Teleostei). Bioacoustics 4:131–141.

    Google Scholar 

  • Lanzing, W.S.R. (1974). Sound production in the cichlid Tilapia mossambica Peters. J. Fish Biol. 6:341–347.

    Article  Google Scholar 

  • Lombard, R.E., Fay, R.R., and Werner, Y.L. (1981). Underwater hearing in the frog Rana catesbeiana. J. Exp. Biol. 91:57–71.

    Google Scholar 

  • Lugli, M., Pavan, G., Torricelli, P., and Bobbio, L. (1995). Spawning vocalizations in male freshwater gobiids (Pisces, Gobiidae). Environ. Biol. Fishes 43:219–231.

    Article  Google Scholar 

  • Mahajan, C.L. (1963). Sound producing apparatus in an Indian catfish Sisor rhabdophorus Hamilton. J. Linn. Soc. Zool. 43:721–724.

    Google Scholar 

  • Mann, D.A., and Lobel, P.S. (1997). Propagation of damselfish (Pomacentridae) courtship sounds. J. Acoust. Soc. Am. 101:3783–3791.

    Article  Google Scholar 

  • Mann, D.A., Lu, Z., and Popper, A.N. (1997). A clupeid fish can detect ultrasound. Nature 389:341.

    Article  CAS  Google Scholar 

  • Markl, H. (1971). Schallerzeugung bei Piranhas (Serrasalminae, Characidae). Z. Vergl. Physiol. 74:39–56.

    Article  Google Scholar 

  • Markl, H. (1972). Aggression und Beuteverhalten bei Piranhas (Serrasalminae, Characidae). Z. Tierpsychol. 30:190–216.

    PubMed  CAS  Google Scholar 

  • Marshall, N.B. (1967). Sound-producing mechanisms and the biology of deep-sea fishes. In: Marine Bio-Acoustics, (Tavolga, W.N., ed.), pp. 123–133. Oxford: Pergamon Press.

    Google Scholar 

  • McCormick, C.A., and Popper, A.N. (1984). Auditory sensitivity and psychophysical tuning curves in the elephant nose fish, Gnathonemus petersii. J. Comp. Physiol. A. 155:753–761.

    Article  Google Scholar 

  • McKibben, J.R., and Bass, A.H. (1998). Behavioral assessment of acoustic parameters relevant to signal recognition and preference in a vocal fish. J. Acoust. Soc. Am. 104:3520–3533.

    Article  PubMed  CAS  Google Scholar 

  • McKibben, J.R., and Bass, A.H. (1999). Peripheral encoding of behaviorally relevant acoustic signals in a vocal fish: single tones. J. Comp. Physiol. A. 184:563–576.

    Article  PubMed  CAS  Google Scholar 

  • McKibben, J.R., and Bass, A.H. (2001). Effect of temporal envelope modulation on acoustic signal recognition in a vocal fish, the plainfin midshipman. J. Acoust. Soc. Am. 109:2934–2943.

    Article  PubMed  CAS  Google Scholar 

  • Müller, J. (1857). Ueber die Fische, welche Töne von sich geben und die Entstehung dieser Töne. Arch. Ant. Physiol. Wiss. Med: 249–279.

    Google Scholar 

  • Myrberg, A.A. (1981). Sound communication and interception in fishes. In: Hearing and Sound Communication in Fishes (Tavolga, W.N, Popper, A.N., and Fay, R.R., eds.), pp. 395–426. New York: Springer.

    Google Scholar 

  • Myrberg, A.A., and Spires, J.Y. (1980). Hearing in damselfishes: An analysis of signal detection among closely related species. J. Comp. Physiol. 140:135–144.

    Article  Google Scholar 

  • Myrberg, A.A., Ha, S.J., and Shamblott, H.S. (1993). The sounds of bicolor damselfish (Pomacentrus partitus): Predictors of body size and a spectral basis for individual recognition and assessment. J. Acoust. Soc. Am. 94:3067–3070.

    Article  Google Scholar 

  • Myrberg, A.A., Kramer, E., and Heinecke, P. (1965). Sound production by cichlid fishes. Science 149:555–558.

    Article  PubMed  Google Scholar 

  • Myrberg, A.A., Spanier, E., and Ha, S.J. (1978). Temporal patterning in acoustical communication. In: Contrasts in Behaviour (Reese, E.S., and Lighter, F.J., eds.), pp. 137–179. New York: Wiley.

    Google Scholar 

  • Nelissen, M.H.J. (1978). Sound production by some tanganyikan cichlid fishes and a hypothesis for the evolution of the R communication mechanisms. Behaviour 64:137–147.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, IS. (1994). Fishes of the World, 3rd ed. New York: Wiley.

    Google Scholar 

  • Ono, R.D., and Poss, S.G (1982). Structure and innervation of the swim bladder musculature in the weakfish, Cynoscion regalis (Teleostei: Sciaenidae). Can. J. Zool. 60:1955–1967.

    Google Scholar 

  • Pfeiffer, W., and Eisenberg, IF (1965). Die Lauterzeugung der Dornwelse (Doradidae). Z. Morph. Ökol. Tiere. 54:669–679.

    Article  Google Scholar 

  • Platz, I.E. (1993). Rana catesbeiana subaquavocalis: A remarkable new species of leopard frog (Rana pipiens complex) from Southeastern Arizona that calls underwater. J. Herpetol. 27:154–167.

    Article  Google Scholar 

  • Poggendorf, D. (1952). Die absolute Hörschwelle des Zwergwelses (Ameiurus nebulosus) und Beiträge zur Physik des Weberschen Apparates der Ostariophysen. Z. Vergl. Physiol. 34:222–257.

    Article  Google Scholar 

  • Popper, A.N., and Fay, R.R. (1999). The auditory periphery in fishes. In: Comparative Hearing: Fish and Amphibians (Fay, R.R., and Popper, A.N., eds.), pp. 43–100. New York: Springer.

    Google Scholar 

  • Popper, A.N., and Tavolga, W.N. (1981). Structure and function of the ear in the marine catfish, Arius felis. J. Comp. Physiol. 144:27–34.

    Article  Google Scholar 

  • Pruzsinszky, I., and Ladich, F (1998). Sound production and reproductive behaviour of armoured catfish Cory doras paleatus (Callichthyidae). Environ. Biol. Fishes 53:183–191.

    Article  Google Scholar 

  • Rauther, M. (1945). Ãœber die Schwimmblase und die zu ihr in Beziehung tretenden somatischen Muskeln bei den Trigliden und anderen Scleroparei. Zool. Jb. Anat. 69:159–250.

    Google Scholar 

  • Rigley, L., and Marshall, J.A. (1973). Sound production by the elephant-nose fish Gnathonemus petersi (Pisces, Mormyridae). Copeia 1973(1): 134–135.

    Google Scholar 

  • Rogers, P.H., and Cox, H. (1988). Underwater sound as a biological stimulus. In: Sensory Biology of Aquatic Animals (Atema, J., Fay, R.R., Popper, A.N., and Tavolga, W.N., eds.), pp. 131–149. New York: Springer.

    Google Scholar 

  • Römer, H. (1993). Environmental and biological constraints for the evolution of long-range signalling and hearing in acoustic insects. Phil. Trans. R. Soc. Lond. B. 340:179–185.

    Article  Google Scholar 

  • Rowland, W.L. (1978). Sound production and associated behaviour in the jewel fish, Hemichromis bimaculatus. Behaviour 78:125–136.

    Article  Google Scholar 

  • Schachner, G., and Schaller, F. (1981). Schallerzeugung und Schallreaktionen beim Antennenwels (Mandim) Rhamdia sebae sebae. Vol. Zool. Beitr. 27:375–392.

    Google Scholar 

  • Schellart, N.A.M., and Popper, A.N. (1992). Functional aspects of the evolution of the auditory system of actinopterygian fish. In: The Evolutionary Biology of Hearing (Webster, D.E., Fay, R.R., and Popper, A.N., eds.), pp. 295–322. New York: Springer.

    Google Scholar 

  • Schneider, H. (1941). Die Bedeutung der Atemhöhle der Labyrinthfische für ihr Hörvermögen. Z. Vergl. Physiol. 29:172–194.

    Article  Google Scholar 

  • Schneider, H. (1961). Neuere Ergebnisse der Lautforschung bei Fischen. Naturwissenschaften 15:513–518.

    Article  Google Scholar 

  • Schneider, H. (1964). Physiologische und morphologische Untersuchungen zur Bioakustik der Tigerfische (Pisces, Theraponidae). Z. Vergl. Physiol. 47:493–558.

    Article  Google Scholar 

  • Schneider, H. (1967). Morphology and physiology of sound-producing mechanisms in teleost fishes. In: Marine BioAcoustics, Vol 2 (Tavolga, W.N., ed.), pp. 135–158. Oxford: Pergamon Press.

    Google Scholar 

  • Schneider, H., and Hasler, A.D. (1960). Laute und Lauterzeugung beim Süßwassertrommler Aplodinotus gruniens Rafinesque (Sciaenidae, Pisces). Z Vergl. Physiol. 43:499–517.

    Article  Google Scholar 

  • Spanier, E. (1979). Aspects of species recognition by sound in four species of damselfish, genus Eupomacentrus (Pisces: Pomacentridae). Z Tierpsychol. 51:301–316.

    PubMed  CAS  Google Scholar 

  • Stabentheiner, A. (1988). Correlations between hearing and sound production in piranhas. J. Comp. Physiol. A. 162:67–76.

    Article  Google Scholar 

  • Stipetić, E. (1939). Ãœber das Gehörorgan der Mormyriden. Z Vergl. Physiol. 26:140–152.

    Article  Google Scholar 

  • Stout, J.F. (1963). The significance of sound production during the reproductive behaviour of Notropis analostanus (Family Cyprinidae). Anim. Behav. 11:83–92.

    Article  Google Scholar 

  • Tavolga, W.N. (1962). Mechanisms of sound production in the ariid catfishes Galeichthys and Bagre. Bull. Amer. Mus. Nat. Hist. 24:1–30.

    Google Scholar 

  • Tavolga, W.N. (1964). Sonic characteristics and mechanisms in marine fishes. In: Marine Bio-Acoustics (Tavolga, W.N., ed.), pp. 195–211. Oxford: Pergamon Press.

    Google Scholar 

  • Tavolga, W.N. (1971). Sound production and detection. In: Fish Physiology, Vol. 5: Sensory Systems and Electric Organs (Hoar, WS., and Randall, D.J., eds.), pp. 135–205. London: Academic Press.

    Google Scholar 

  • Valinsky, W., and Rigley, L. (1981). Function of sound production by the skunk loach Botia horae (Pisces, Cobitidae). Z Tierpsychol. 55:161–172.

    Google Scholar 

  • von Frisch, K. (1936). Ãœber den Gehörsinn der Fische. Biol. Rev. 11:210–246.

    Article  Google Scholar 

  • vonFrisch, K., and Stettner, H. (1932). Untersuchungen über den Sitz des Gehörsinnes bei der Elritze. Z Vergl. Physiol. 17:687–801.

    Article  Google Scholar 

  • Walsh, P.J., Mommsen, T.P., and Bass, A.H. (1995). Biochemical and molecular aspects of singing in batrachoidid fishes. In: Biochemistry and Molecular Biology of Fishes, Vol. 4: Metabolic Biochemistry (Hochachka, P.W., and Mommsen, T.P., eds.), pp. 279–289. The Hague, Netherlands: Elsevier.

    Google Scholar 

  • Winn, H.E. (1964). The biological significance of fish sounds. In: Marine Bio-Acoustics (Tavolga, W.N., ed.), pp. 213–231, Oxford: Pergamon Press.

    Google Scholar 

  • Winn, H.E., and Marshall, J.A. (1963). Soundproducing organ of the squirrelfish, Holocentrus rufus. Physiol. Zool. 36:36–44.

    Google Scholar 

  • Winn, H.E., Marshall, J.A., and Hazlett, B. (1964). Behavior, diel activities, and stimuli that elicit sound production and reactions to sounds in the long spine squirrelfish. Copeia 1964(2):413–425.

    Google Scholar 

  • Wysocki, L.E.,and Ladich, F (2001). The ontogenetic development of auditory sensitivity, vocalization and acoustic communication in the labyrinth fish Trichopsis vittata. J. Comp. Physiol. A. 187: 177–187.

    Article  PubMed  CAS  Google Scholar 

  • Wysocki, L.E., and Ladich, F. (2002). Can fishes resolve temporal characteristics of sounds? New insights using auditory evoked responses. Hear. Res. 169:34–36.

    Article  Google Scholar 

  • Yager, D.D. (1992a). Underwater acoustic communication in the African pipid frog Xenopus borealis. Bioacoustics 4:1–24.

    Google Scholar 

  • Yager, D.D. (1992b). A unique sound production mechanism in the pipid anuran Xenopus borealis. Zool. J. Linn. Soc. 104:351–375.

    Article  Google Scholar 

  • Zelick, R., Mann, D.A., and Popper, A.N. (1999). Acoustic communication in fishes and frogs. In: Comparative Hearing: Fish and Amphibians (Fay, R.R., and Popper, A.N., eds.), pp. 363–411. New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Ladich, F., Bass, A.H. (2003). Underwater Sound Generation and Acoustic Reception in Fishes with Some Notes on Frogs. In: Collin, S.P., Marshall, N.J. (eds) Sensory Processing in Aquatic Environments. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22628-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22628-6_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95527-8

  • Online ISBN: 978-0-387-22628-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics