Skip to main content

Rotamer-Pair Energy Calculations Using a Trie Data Structure

  • Conference paper
Algorithms in Bioinformatics (WABI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3692))

Included in the following conference series:

Abstract

Protein design software places amino acid side chains by precomputing rotamer-pair energies and optimizing rotamer placement. If the software optimizes by rapid stochastic techniques, then the precomputation phase dominates run time. We present a new algorithm for rapid rotamer-pair energy computation that uses a trie data structure. The trie structure avoids redundant energy computations, and lends itself to time-saving pruning techniques based on a simple geometric criteria. With our new algorithm, we compute rotamer-pair energies nearly 4 times faster than the previous approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Looger, L.L., Dwyer, M.A., Smith, J.J., Hellinga, H.W.: Computational design of receptor and sensor proteins with novel functions. Nature 423, 185–190 (2003)

    Article  Google Scholar 

  2. Dwyer, M., Looger, L., Hellinga, H.: Computational design of a biologically active enzyme. Science 304, 1967–1971 (2004)

    Article  Google Scholar 

  3. Kuhlman, B., O’Niell, J.W., Kim, D.E., Zhang, K.Y., Baker, D.: Accurate computer-based design of a new backbone conformation in the second turn of protein L. J. Mol. Bio. 315, 471–477 (2002)

    Article  Google Scholar 

  4. Kuhlman, B., Dantas, G., Ireton, G., Varani, G., Stoddard, B., Baker, D.: Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003)

    Article  Google Scholar 

  5. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H.N.S.I., Bourne, P.: The protein data bank. Nucleic Acids Research 28, 235–242 (2000)

    Article  Google Scholar 

  6. Butterfoss, G., Hermans, J.: Boltzmann-type distribution of side-chain conformation in proteins. Protein Science 12, 2719–2731 (2003)

    Article  Google Scholar 

  7. Ponder, J.W., Richards, F.: Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Bio. 193, 775–791 (1987)

    Article  Google Scholar 

  8. Dunbrack, R.L., Karplus Jr., M.: Backbone dependant rotamer library for proteins: application to side chain prediction. J. Mol. Bio. 230, 543–574 (1993)

    Article  Google Scholar 

  9. Dunbrack Jr., R.L.: Rotamer libraries in the 21st century. Curr. Opin. Struct. Biol. 12, 431–440 (2002)

    Article  Google Scholar 

  10. Lovell, S.C., Word, J.M., Richardson, J.S., Richardson, D.C.: The penultimate rotamer library. Proteins: Structure Function and Genetics 40, 389–408 (2000)

    Article  Google Scholar 

  11. Desmet, J., Maeyer, M.D., Hazes, B., Lasters, I.: The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356, 539–541 (1992)

    Article  Google Scholar 

  12. Goldstein, R.F.: Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophysical Journal 66, 1335–1340 (1994)

    Article  Google Scholar 

  13. Looger, L.L., Hellinga, H.W.: Generalized dead-end elimination algorithms make large-scale protein side-chain structure prediction tractable: implications for protein design and structural genomics. J Mol Biol 307, 429–445 (2001)

    Article  Google Scholar 

  14. Gordon, D., Mayo, S.: Branch-and-terminate: a combinatorial optimization algorithm for protein design. Structure Fold Des 7, 1089–1098 (1999)

    Article  Google Scholar 

  15. Leaver-Fay, A., Kuhlman, B., Snoeyink, J.: An adaptive dynamic programming algorithm for the side chain placement problem. In: Pacific Symposium on Biocomputing, pp. 17–28. The Big Island, HI (2005)

    Google Scholar 

  16. Pierce, N., Winfree, E.: Protein design is NP-hard. Protein Engineering 15, 779–782 (2002)

    Article  Google Scholar 

  17. Bradley, P., Chivian, D., Meiler, J., Misura, K., Rohl, C., Schief, W., Wedemeyer, W., Schueler-Furman, O., Murphy, P., Strauss, C., Schonbrun, J., Baker, D.: Rosetta predictions in CASP5: Successes, failures, and prospects for complete automation. Proteins: Structure Function and Genetics 53, 457–468 (2003)

    Article  Google Scholar 

  18. Dahiyat, B.I., Mayo, S.L.: De novo protein design: fully automated sequence selection. Science 278, 82–87 (1997)

    Article  Google Scholar 

  19. Holm, L., Sander, C.: Fast and simple monte carlo algorithm for side chain optimization in proteins: application to model building by homology. Proteins 14, 213–223 (1992)

    Article  Google Scholar 

  20. Saven, J.G., Wolynes, P.G.: Statistical mechanics of the combinatorial synthesis and analysis of folding macromolecules. J. Phys. Chem. B 101, 8375–8389 (1997)

    Article  Google Scholar 

  21. Desjarlais, J.R., Handel, T.M.: De novo design of the hydrophobic cores of proteins. Protein Science 4, 2006–2018 (1995)

    Article  Google Scholar 

  22. Weiner, P.: Linear pattern matching algorithms. In: Proc. 14th IEEE Annual Symp. on Switching and Automata Theory, pp. 1–11 (1973)

    Google Scholar 

  23. McCreight, E.M.: A space-economical suffix tree construction algorithm. Jrnl. of Algorithms 23, 262–272 (1976)

    MATH  MathSciNet  Google Scholar 

  24. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14, 249–260 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hellinga, H., Richards, F.: Construction of new ligand binding sites in proteins of known structure. I: Computer-aided modeling of sites with pre-defined geometry. J. Mol. Bio 222, 763–785 (1991)

    Article  Google Scholar 

  26. Lazaridis, T., Karplus, M.: Effective energy function for proteins in solution. Proteins: Structure Function and Genetics 35, 133–152 (1999)

    Article  Google Scholar 

  27. Kortemme, T., Morozov, A.V., Baker, D.: An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J. Mol. Bio. 326, 1239–1259 (2003)

    Article  Google Scholar 

  28. Noonan, K., O’Brien, D., Snoeyink, J.: Probik: Protein backbone motion by inverse kinematics. In: WAFR 2004, Utrecht/Zeist, The Netherlands (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leaver-Fay, A., Kuhlman, B., Snoeyink, J. (2005). Rotamer-Pair Energy Calculations Using a Trie Data Structure. In: Casadio, R., Myers, G. (eds) Algorithms in Bioinformatics. WABI 2005. Lecture Notes in Computer Science(), vol 3692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11557067_32

Download citation

  • DOI: https://doi.org/10.1007/11557067_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29008-7

  • Online ISBN: 978-3-540-31812-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics