Skip to main content

Reactive Oxygen Species as Mediators of Signal Transduction in Cardiovascular Diseases

  • Chapter
Antioxidants and Cardiovascular Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 258))

  • 971 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freeman BA, Capro JD. Free radicals and tissue injury. Lab Invest 1982;46:412–26.

    Google Scholar 

  2. Halliwell B, Gutteridge JM. The importance of free radicals and catalytic metal ions in human diseases. Mol Aspects Med 1985;8:89–193.

    Article  CAS  PubMed  Google Scholar 

  3. Suzuki YJ, Forman HJ, Sevanian A. Oxidants as stimulators of signal transduction. Free Radic Biol Med 1997;22:269–85.

    Article  CAS  PubMed  Google Scholar 

  4. Finkel T. Signal transduction by reactive oxygen species in non-phagocytic cells. J Leukoc Biol 1999;65:337–40.

    CAS  PubMed  Google Scholar 

  5. Maulik N, Das DK. Potentiation of angiogenic response by ischemic and hypoxic preconditioning of the heart. J Cell Mol Med 2002;6:13–24.

    CAS  PubMed  Google Scholar 

  6. Maulik N, Das DK. Redox signaling in vascular angiogenesis. Free Radic Biol Med 2002;33:1047–60.

    Article  CAS  PubMed  Google Scholar 

  7. Lelkes PI, Hahn KL, Sukovich DA, Karmiol S, Schmidt DH. On the possible role of reactive oxygen species in angiogenesis. Adv Exp Med Biol 1998;454:295–310.

    CAS  PubMed  Google Scholar 

  8. Wolin MS. Interactions of oxidants with vascular signaling systems. Arterioscler Thromb Vasc Biol 2000;20:1430–42.

    CAS  PubMed  Google Scholar 

  9. Lynch SM, Frei B. Mechanisms of copper-and iron-dependent oxidative modification of human low density lipoprotein. J Lipid Res 1993;34:1745–53.

    CAS  PubMed  Google Scholar 

  10. Khan BV, Parthasarathy SS, Alexander RW, Medford RM. Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J Clin Invest 1995;95:1262–70.

    CAS  PubMed  Google Scholar 

  11. Reddy MA, Thimmalapura PR, Lanting L, Nadler JL, Fatima S, Natarajan R. The oxidized lipid and lipoxygenase product 12(S)-hydroxyeicosatetraenoic acid induces hypertrophy and fibronectin transcription in vascular smooth muscle cells via p38 MAPK and cAMP response element-binding protein activation. Mediation of angiotensin II effects. J Biol Chem 2002;277:9920–8.

    Article  CAS  PubMed  Google Scholar 

  12. Natarajan R, Reddy MA, Malik KU, Fatima S, Khan BV. Signaling mechanisms of nuclear factor-kappab-mediated activation of inflammatory genes by 13-hydroperoxyoctadecadienoic acid in cultured vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2001;21:1408–13.

    CAS  PubMed  Google Scholar 

  13. Sultana C, Shen Y, Rattan V, Kalra VK. Lipoxygenase metabolites induced expression of adhesion molecules and transendothelial migration of monocyte-like HL-60 cells is linked to protein kinase C activation. J Cell Physiol 1996; 167:477–87.

    Article  CAS  PubMed  Google Scholar 

  14. Chen K, Thomas SR, Keaney J, J.F. Beyond LDL oxidation: ROS in vascular signal transduction. Free Radic Biol Med 2003;35:117–32.

    Article  CAS  PubMed  Google Scholar 

  15. Denu JM, Tanner KG. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 1998;37:5633–42.

    Article  CAS  PubMed  Google Scholar 

  16. Claiborne A, Miller H, Parsonage D, Ross RP. Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation. FASEB J 1993;7:1483–90.

    CAS  PubMed  Google Scholar 

  17. Kim SO, Merchant K, Nudelman R, et al. OxyR: a molecular code for redox-related signaling. Cell 2002;109:383–96.

    Article  CAS  PubMed  Google Scholar 

  18. Heinecke JW, Shapiro BM. Respiratory burst oxidase of fertilization. Proc Natl Acad Sci USA. 1989;86:1259–63.

    Article  CAS  PubMed  Google Scholar 

  19. Babior BM, Curnutte JT, McMurrich BJ. The particulate superoxide-forming system from human neutrophils. Properties of the system and further evidence supporting its participation in the respiratory burst. J Clin Invest 1976;58:989–96.

    CAS  PubMed  Google Scholar 

  20. Verweij CL, Gringhuis SI. Oxidants and tyrosine phosphorylation: role of acute and chronic oxidative stress in T-and B-lymphocyte signaling. Antiox Redox Signal 2002;4:543–51.

    Article  CAS  Google Scholar 

  21. Ekholm R. Biosynthesis of thyroid hormones. Int Rev Cytol 1990;120:243–88.

    Article  CAS  PubMed  Google Scholar 

  22. Krieger-Brauer HI, Kather H. Human fat cells possess a plasma membrane-bound H2O2-generating system that is activated by insulin via a mechanism bypassing the receptor kinase. J Clin Invest 1992;89:1006–13.

    CAS  PubMed  Google Scholar 

  23. Abe J, Berk BC. Reactive oxygen species as mediators of signal transduction in cardiovascular disease. In: Antioxidants and Cardiovascular Disease, edited by J.-C. Tardif and M. Bourassa (Kluwer Academic Publishers, 2000), pp. 57–70.

    Google Scholar 

  24. Kunsch C, Medford RM. Oxidation-sensitive transcription and gene expression in atherosclerosis. In: Oxidative Stress and Vascular Disease, edited by J.F. Keaney (Kluwer Academic Publishers, 1999), pp. 135–54.

    Google Scholar 

  25. Chen X, Medford RM. Oxidation-reduction sensitive regulation of inflammatory gene expression in the vasculature. In: Vascular adhesion molecules and inflammation, edited by Pearson JD (Birkhauser Press, 1999) pp. 161–78.

    Google Scholar 

  26. Gibbons GH, Dzau VJ. Molecular therapies for vascular diseases. Science 1996;272:689–93.

    CAS  PubMed  Google Scholar 

  27. Ross R. Cell biology of atherosclerosis. Annu Rev Physiol 1995;57:791–804.

    Article  CAS  PubMed  Google Scholar 

  28. Souza HP, Cardounel AJ, Zweier JL. Mechanisms of free radical production in the vascular wall. Coron Artery Dis 2003; 14:101–7.

    Article  PubMed  Google Scholar 

  29. Hanna IR, Taniyama Y, Szocs K, Rocic P, Griendling KK. NAD(P)H oxidase-derived reactive oxygen species as mediators of angiotensin II signaling. Antiox Redox Signal 2002;4:899–914.

    Article  CAS  Google Scholar 

  30. Heinecke J. Sources of vascular oxidative stress. In: Oxidative Stress and Vascular Disease, edited by J.F. Keaney (Kluwer Academic Publishers, 1999), pp. p 9–26.

    Google Scholar 

  31. Phan SH, Gannon DE, Varani J, Ryan US, Ward PA. Xanthine oxidase activity in rat pulmonary artery endothelial cells and its alteration by activated neutrophils. Am J Pathol 1989; 134:1201–11.

    CAS  PubMed  Google Scholar 

  32. Ratych RE, Chuknyiska RS, Bulkley GB. The primary localization of free radical generation after anoxia/reoxygenation in isolated endothelial cells. Surgery 1987;102:122–31.

    CAS  PubMed  Google Scholar 

  33. Holland JAP, K.A., Pappolla MA, Wolin MS, Rogers NJ, Stemerman MB. Bradykinin induces superoxide anion release from human endothelial cells. J Cell Physiol 1990;143:21–5.

    Article  CAS  PubMed  Google Scholar 

  34. Tesfamariam B, Cohen RA. Role of superoxide anion and endothelium in vasoconstrictoraction of prostaglandin endoperoxide. Am J Physiol 1992;262:H1915–9.

    CAS  PubMed  Google Scholar 

  35. Kukreja RC, Kontos HA, Hess ML, Ellis EF. PGH synthetase and lipoxygenase generate superoxide in the presence of NADH or NADPH. Circ Res 1986;59:612–9.

    CAS  PubMed  Google Scholar 

  36. Hsieh CC, Yen MH, Yen CH, Lau YT. Oxidized low density lipoprotein induces apoptosis via generation of reactive oxygen species in vascular smooth muscle cells. Cardiovasc Res 2001;49:135–45.

    Article  CAS  PubMed  Google Scholar 

  37. Sanders SP, Zweier JL, Kuppusamy P, Harrison SJ, Bassett DJ, Gabrielson E. Hyperoxic sheep pulmonary microvascular endathelial cells generate free radicals via mitochondrial electron transport. J Clin Invest 1993;91:46–52.

    CAS  PubMed  Google Scholar 

  38. Ballinger SW, Patterson C, Knight-Lozano CA, et al. Mitochondrial integrity and function in atherogenesis. Circulation 2002;106:544–9.

    Article  CAS  PubMed  Google Scholar 

  39. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 2000;29:222–30.

    Article  CAS  PubMed  Google Scholar 

  40. Ishida I, Kubo H, Suzuki S, et al. Hypoxia diminishes toll-like receptor 4 expression through reactive oxygen species generated by mitochondria in endothelial cells. J Immunol 2002; 169:2069–75.

    CAS  PubMed  Google Scholar 

  41. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature 2000;404:787–90.

    Article  CAS  PubMed  Google Scholar 

  42. Fleming I, Michaelis UR, Bredenkotter D, Fisslthaler B, F. D, Brandes RP, Busse R. Endothelium-derived hyperpolarizing factor synthase (cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res 2001;88:44–51.

    CAS  PubMed  Google Scholar 

  43. Vasquez-Vivar J, Kalyanaraman B, Martasek P, et al. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA 1998;95:9220–5.

    Article  CAS  PubMed  Google Scholar 

  44. Xia Y, Tsai AL, Berka V, Zweier JL. Superoxide generation from endothelial nitric oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem 1998;273:25804–8.

    Article  CAS  PubMed  Google Scholar 

  45. Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 1997;100:2153–7.

    CAS  PubMed  Google Scholar 

  46. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000;86:494–501.

    CAS  PubMed  Google Scholar 

  47. Mohazzab KM, Kaminski PM, Wolin MS. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol 1994;266:H2568–72.

    CAS  PubMed  Google Scholar 

  48. Pagano PJ, Tornheim K, Cohen RA. Superoxide anion production by rabbit thoracic aorta: effect of endothelium-derived nitric oxide. Am J Physiol 1993;265:H707–12.

    CAS  PubMed  Google Scholar 

  49. Mohazzab KM, Wolin MS. Sites of superoxide anion production detected by lucigenin in calf pulmonary artery smooth muscle. Am J Physiol 1994;267:L815–22.

    CAS  PubMed  Google Scholar 

  50. Sorescu D, Weiss D, Lassegue B, et al. Superoxide production and expression of nox family proteins inhuman atherosclerosis. Circulation 2002;105:1429–35.

    Article  CAS  PubMed  Google Scholar 

  51. Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD. Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 2001;269:131–40.

    Article  CAS  PubMed  Google Scholar 

  52. Suh YA, Arnold RS, Lassegue B, et al. Cell transformation by the superoxide-generating oxidase Moxl. Nature 1999;401:79–82.

    Article  CAS  PubMed  Google Scholar 

  53. Griendling KK. Novel NAD(P)H oxidases in the cardiovascular system. Heart 2004;90:491–3.

    Article  CAS  PubMed  Google Scholar 

  54. Rajagopalan S, Kurz S, Munzel T, et al. Angiotensin II mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: Contribution to alterations of vasomotor tone. J Clin Invest 1996;97:1916–0193.

    CAS  PubMed  Google Scholar 

  55. Warnholtz A, Nickenig G, Schulz E, et al. Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 1999;99:2027–33.

    CAS  PubMed  Google Scholar 

  56. Fukui T, Ishizaka N, Rajagopalan S, et al. p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res 1997;80:45–51.

    CAS  PubMed  Google Scholar 

  57. Kalinina N, Agrotis A, Tararak E, et al. Cytochrome b558-dependent NAD(P)H oxidase-phox units in smooth muscle and macrophages of atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2002;22:2037–43.

    Article  CAS  PubMed  Google Scholar 

  58. Ushio-Fukai M, Zafari AM, Fukui T, Ishizaka N, Griendling KK. p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II induced hypertrophy in vascular smooth muscle cells. J. Biol. Chem. 1996;271:23317–21.

    Article  CAS  PubMed  Google Scholar 

  59. Zafari AM, Ushio-Fukai M, Akers M, et al. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 1998;32:488–95.

    CAS  PubMed  Google Scholar 

  60. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 1995;270:296–9.

    CAS  PubMed  Google Scholar 

  61. Irani K, Xia Y, Zweier JL, et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 1997;275:1649–52.

    Article  CAS  PubMed  Google Scholar 

  62. Bae YS, Kang SW, Seo MS, et al. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-medicated tyrosine phosphorylation. J Biol Chem 1997;272:217–21.

    Article  CAS  PubMed  Google Scholar 

  63. Ohba M, Shibanuma M, Kuroki T, Nose K. Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J Cell Biol 1994;126:1079–88.

    Article  CAS  PubMed  Google Scholar 

  64. De Keulenaer GW, Chappell DC, Ishizaka N, Nerem RM, Alexander RW, Griendling KK. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. Circ Res 1998;82:1094–101.

    PubMed  Google Scholar 

  65. Roveri A, Coassin M, Maiorino M, et al. Effect of hydrogen peroxide on calcium homeostasis in smooth muscle cells. Arch Biochem Biophys 1992;297:265–70.

    Article  CAS  PubMed  Google Scholar 

  66. Dreher D, Jornot L, Junod AF. Effects of hypoxanthine xanthine oxidase on Ca2+ stores and protein synthesis in human endothelial cells. Circ Res 1995;76:388–95.

    CAS  PubMed  Google Scholar 

  67. Doan TN, Gentry DL, Taylor AA, Elliott SJ. Hydrogen peroxide activates agonist-sensitive CA2+-flux pathways in canine venous endothelial cells. Biochem J 1994;297:209–15.

    CAS  PubMed  Google Scholar 

  68. Rao GN, Alexander RW, Runge MS. Linoleic acid and its metabolites, hydroperoxyoctadecadienoic acids, stimulate c-Fos, c-Jun, and c-Myc mRNA expression, mitogen-activated protein kinase activation, and growth in rat aortic smooth muscle cells. J Clin Invest 1995;96:842–7.

    CAS  PubMed  Google Scholar 

  69. Grover AK, Samson SE. Effect of superoxide radical on Ca2+ pumps of coronary artery. Am J Physiol 1988;255:C297–303.

    CAS  PubMed  Google Scholar 

  70. Grover AK, Samson SE, Fomin VP. Peroxide inactivates calcium pump in pig coronary artery. Am J Phyisol 1992;263:H537–43.

    CAS  Google Scholar 

  71. Weir EK, Archer SL. The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J 1995;9:183–9.

    CAS  PubMed  Google Scholar 

  72. Spitaler MM, Graier WF. Vascular targets of redox signaling in diabetes mellitus. Diabetologia 2002;45:476–94.

    Article  CAS  PubMed  Google Scholar 

  73. Sundaresan M, Yu ZX, Ferrans VJ, et al. Regulation of reactive-oxygen-species generation in fibroblasts by Racl. Biochem J 1996;318:379–82.

    CAS  PubMed  Google Scholar 

  74. Chen XL, Zhang Q, Zhao R, et al. Racl and Superoxide are required for the expression of cell adhesion molecules induced by tumor necrosis factor-alpha in endothelial cells. J Pharmacol Exp Ther 2003;305:573–80.

    Article  CAS  PubMed  Google Scholar 

  75. Chen XL, Zhang Q, Zhao R, Medford RM. TNF-alpha-induced MCP-1 expression is activated by the Racl and NADPH oxidase-dependent pathways in endothelial cells: Role of superoxide and hydrogen peroxide. 4th Annual Arteriosclerosis Thrombosis and Vascular Biology 2003:p311.

    Google Scholar 

  76. Laufs U, Liao JK. Targeting Rho in cardiovascular disease. Circ Res 2000;87:526–8.

    CAS  PubMed  Google Scholar 

  77. Lander HM, Ogiste JS, Teng KK, Novogrodsky A. p21ras as a common signaling target of reactive free radicals and cellular redox stress. J Biol Chem 1995;270:21195–8.

    Article  CAS  PubMed  Google Scholar 

  78. Berk BC. Protein kinases that mediate redox-sensitive signal transduction. In: Oxidative Stress and Vascular Disease, edited by J.F. Keaney (Kluwer Academic Publishers, 1999), pp. 335–48.

    Google Scholar 

  79. Chen K, Vita JA, Berk BC, Keaney JF, Jr. c-Jun N-terminal kinase activation by hydrogen peroxide in endothelial cells involves SRC-dependent epidermal growth factor receptor transactivation. J Biol Chem 2001;276:16045–50.

    Article  CAS  PubMed  Google Scholar 

  80. Thomas SR, Chen K, Keaney JF, Jr. Hydrogen peroxide activates endothelial nitric-oxide synthase through coordinated phosphorylation and dephosphorylation via a phosphoinositide 3-kinase-dependent signaling pathway. J Biol Chem 2002;277:6017–24.

    Article  CAS  PubMed  Google Scholar 

  81. Ushio-Fukai M, Griendling KK, Becker PL, Hilenski L, Halleran S, Alexander RW. Epidermal growth factor receptor transactivation by angiotensin II requires reactive oxygen species in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2001;21:489–95.

    CAS  PubMed  Google Scholar 

  82. Gonzalez-Rubio M, Voit S, Rodriguez-Puyol D, Weber M, Marx M. Oxidative stress induces tyrosine phosphorylation of PDGF alpha-and beta-receptors and pp60c-src in mesangial cells. Kidney Int 1996;50:164–73.

    CAS  PubMed  Google Scholar 

  83. Min DS, Kim EG, Exton JH. Involvement of tyrosine phosphorylation and protein kinase C in the activation of phospholipase D by H2O2 in Swiss 3T3 fibroblasts. J Biol Chem 1998;273:29986–94.

    Article  CAS  PubMed  Google Scholar 

  84. Linseman DA, Benjamin CW, Jones DA. Convergence of angiotensin II and platelet-derived growth factor receptor signaling cascades in vascular smooth muscle cells. J Biol Chem 1995;270:12563–8.

    Article  CAS  PubMed  Google Scholar 

  85. Heeneman S, Haendeler J, Saito Y, Ishida M, Berk BC. Angiotensin II induces transactivation of two different populations of the platelet-derived growth factor beta receptor. Key role for the p66 adaptor protein She. J Biol Chem 2000;275:15926–32.

    Article  CAS  PubMed  Google Scholar 

  86. Touyz RM. Recent advances in intracellular signaling in hypertension. Current Opinion in Nephrology and Hypertension 2003;12:165–74.

    Article  CAS  PubMed  Google Scholar 

  87. Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 2000;20:2175–83.

    CAS  PubMed  Google Scholar 

  88. Abe J, Takahashi M, Ishida M, Lee JD, Berk BC. c-Src is required for oxidative stress-mediated activation of big mitogen-activated protein kinase 1. J Biol Chem 1997;272:20389–94.

    Article  CAS  PubMed  Google Scholar 

  89. Wang D, Yu X, Cohen RA, Brecher P. Distinct effects of N-acetylcysteine and nitric oxide on angiotensin II-induced epidermal growth factor receptor phosphorylation and intracellular Ca(2+) levels. J Biol Chem 2000;275:12223–30.

    Article  CAS  PubMed  Google Scholar 

  90. Berk BC. Redox signals that regulate the vascular response to injury. Thromb Haemost 1999;82:810–7.

    CAS  PubMed  Google Scholar 

  91. Yoshizumi M, Abe J, Haendeler J, Huang Q, Berk BC. Src and Cas mediate JNK activation but not ERK1/2 and p38 kinases by reactive oxygen species. J Biol Chem 2000;275:11706–12.

    Article  CAS  PubMed  Google Scholar 

  92. Marrero MB, Schieffer B, Paxton WG, et al. Direct stimulation of Jak/STAT pathway by the angiotensin II ATI receptor. Nature 1995;375:247–50.

    Article  CAS  PubMed  Google Scholar 

  93. McWhinney CD, Dostal D, Baker K. Angiotensin II activates Stat5 through Jak2 kinase in cardiac myocytes. J Mol Cell Cardiol 1998;30:751–61.

    Article  CAS  PubMed  Google Scholar 

  94. Schieffer B, Luchtefeld M, Braun S, Hilfiker A, Hilfiker-Kleiner D, Drexler H. Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction. Circ Res 2000;87:1195–201.

    CAS  PubMed  Google Scholar 

  95. Garcia-Morales P, Minami Y, Luong E, Klausner RD, Samelson LE. Tyrosine phosphorylation in T cells is regulated by phosphatase activity: Studies with phenylarsine oxide. Proc Natl Acad Sci. USA. 1990;87:9255–9.

    Article  CAS  PubMed  Google Scholar 

  96. Hadari YR, Geiger B, Nadiv O, et al. Hepatic tyrosine-phosphorylated proteins identified and localized following in vivo inhibition of protein tyrosine phosphatases: Effects of H2O2 and vanadate administration into rat livers. Mol Cell Endocrinol 1993;97:9–17.

    Article  CAS  PubMed  Google Scholar 

  97. Sullivan SG, Chiu DT-Y, Errasfa M, Wang JM, Qi J-S, Stern A. Effects of H2O2 on protein tyrosine phosphatase activity in HER14 cells. Free Radic Biol Med 1994;16:399–403.

    Article  CAS  PubMed  Google Scholar 

  98. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002;298:1911–2.

    Article  CAS  PubMed  Google Scholar 

  99. Yoshizumi M, Tsuchiya K, Tamaki T. Signal transduction of reactive oxygen species and mitogen-activated protein kinases in cardiovascular disease. J Med Invest 2001;48:11–24.

    CAS  PubMed  Google Scholar 

  100. Auge N, Escargueil-Blanc I, Lajoie-Mazenc I, et al. Potential role for ceramide in mitogen-activated protein kinase activation and proliferation of vascular smooth muscle cells induced by oxidized low density lipoprotein. J Biol Chem 1998:12893–900.

    Google Scholar 

  101. Ushio-Fukai M, Alexander RW, Akers M, Griendling KK. p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 1998;273:15022–9.

    Article  CAS  PubMed  Google Scholar 

  102. Bhunia AK, Han H, Snowden A, Chatterjee S. Redox-regulated signaling by lactosylceramide in the proliferation of human aortic smooth muscle cells. Biol Chem 1997;272:15642–9.

    Article  CAS  Google Scholar 

  103. Abe J, Kusuhara M, Ulevitch RJ, Berk BC, Lee JD. Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase. J Biol Chem 1996;271:16586–90.

    Article  CAS  PubMed  Google Scholar 

  104. Zhang J, Jin N, Liu Y, Rhoades RA. Hydrogen peroxide stimulates extracellular signal-regulated protein kinases in pulmonary arterial smooth muscle cells. Am J Respir Cell MolBiol 1998;19:324–32.

    CAS  Google Scholar 

  105. Baas AS, Berk BC. Differential activation of mitogen-activated protein kinases by H2O2 and O2-in vascular smooth muscle cells. Circ Res 1995;77:29–36.

    CAS  PubMed  Google Scholar 

  106. Touyz RM, Cruzado M, Tabet F, Yao G, Salomon S, Schiffrin EL. Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation. Can J Physiol Pharmacol 2003;81:159–67.

    Article  CAS  PubMed  Google Scholar 

  107. Viedt C, Soto U, Krieger-Brauer HI, et al. Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II: involvement of p22phox and reactive oxygen species. Arterioscler Thromb Vasc Biol 2000;20:940–8.

    CAS  PubMed  Google Scholar 

  108. Frank GD, Eguchi S, Inagami T, Motley ED. N-acetylcysteine inhibits angiotensin II-mediated activation of extracellular signal-regulated kinase and epidermal growth factor receptor. Biochem Biophys Res Commun 2001;280:1116–9.

    Article  CAS  PubMed  Google Scholar 

  109. Huot J, Houle F, Rousseau S, Deschesnes RG, Shah GM, Landry J. SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J Cell Biol 1998;143:1361–73.

    Article  CAS  PubMed  Google Scholar 

  110. Huot J, Houle F, Marceau F, Landry J. Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res 1997;80:383–92.

    CAS  PubMed  Google Scholar 

  111. Yeh LH, Park YJ, Hansalia RJ, et al. Shear-induced tyrosine phosphorylation in endothelial cells requires Racl-dependent production of ROS. Am J Physiol 1999;276:C838–47.

    CAS  PubMed  Google Scholar 

  112. Ichijo H, Nishida E, Irie K, et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 1997;275:90–4.

    Article  CAS  PubMed  Google Scholar 

  113. Surapisitchat J, Hoefen RJ, Pi X, Yoshizumi M, Yan C, Berk BC. Fluid shear stress inhibits TNF-alpha activation of JNK but not ERK1/2 or p38 in human umbilical vein endothelial cells: Inhibitory crosstalk among MAPK family members. Proc Natl Acad Sci USA 2001;98:6476–81.

    Article  CAS  PubMed  Google Scholar 

  114. Yamawaki H, Lehoux S, Berk BC. Chronic physiological shear stress inhibits tumor necrosis factor-induced proinflammatory responses in rabbit aorta perfused ex vivo. Circulation 2003;108:1619–25.

    Article  CAS  PubMed  Google Scholar 

  115. Saitoh M, Nishitoh H, Fujii M, et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. Embo J 1998;17:2596–606.

    Article  CAS  PubMed  Google Scholar 

  116. Yamawaki H, Haendeler J, Berk BC. Thioredoxin: a key regulator of cardiovascular homeostasis. Circ Res 2003;93:1029–33.

    Article  CAS  PubMed  Google Scholar 

  117. Lassegue B, Sorescu D, Szocs K, et al. Novel gp91(phox) homologues in vascular smooth muscle cells: noxl mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 2001;88:888–94.

    CAS  PubMed  Google Scholar 

  118. Ushio-Fukai M, Alexander RW, Akers M, et al. Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 1999;274:22699–704.

    Article  CAS  PubMed  Google Scholar 

  119. Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox-sensitive transcription factors. Cell Signal 2002;14:879–97.

    Article  CAS  PubMed  Google Scholar 

  120. Haddad JJ. Science review: redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: role for hypoxia-inducible factor-1 alpha. Crit Care 2003;7:47–54.

    Article  PubMed  Google Scholar 

  121. de Nigris F, Lerman LO, Napoli C. New insights in the transcriptional activity and coregulator molecules in the arterial wall. Int J Cardiol 2002;86:153–68.

    Article  PubMed  Google Scholar 

  122. Kunsch C, Medford RM. Oxidative stress as a regulator of gene expression in the vasculature. Circ Res 1999;85:753–66.

    CAS  PubMed  Google Scholar 

  123. Crawford K, Zbinden I, Amstad P, Cerutti P. Oxidant stress induces the proto-oncogenes c-fos and c-myc in mouse epidermal cells. Oncogene 1988;3:27–32.

    CAS  Google Scholar 

  124. Devary Y, Gottlieb RA, Lau LF, Karin M. Rapid and preferential activation of the c-jun gene during the mammalian UV response. Mol Cell Biol 1991;11:2804–11.

    CAS  PubMed  Google Scholar 

  125. Nose K, Shibanuma M, Kikuchi K, Kageyama H, Sakiyama S, Kuroki T. Transcriptional activation of early-response genes by hydrogen peroxide in a mouse osteoblastic cell line. Eur J Biochem 1991;201:99–106.

    Article  CAS  PubMed  Google Scholar 

  126. Collart FR, Horio M, Huberman E. Heterogeneity in c-jun gene expression in normal and malignant cells exposed to either ionizing radiation or hydrogen peroxide. Radial Res 1995;142:188–96.

    CAS  Google Scholar 

  127. Shono T, Ono M, Izumi H, et al. Involvement of the transcription factor NF-kB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol Cell Biol 1996; 16:4231–9.

    CAS  PubMed  Google Scholar 

  128. Lin JH, Zhu Y, Liao HL, Kobari Y, Groszek L, Stemerman MB. Induction of vascular cell adhesion molecule-1 by low-density lipoprotein. Atherosclerosis 1996;127:185–94.

    Article  CAS  PubMed  Google Scholar 

  129. Maziere C, Kjavaheri-Mergny M, Frye-Fressart V, Kelattre J, Maziere JC. Copper and cell-oxidized low-density lipoprotein induces activator protein 1 in fibroblasts, endothelial and smooth muscle cells. FEBS Lett 1997;409:351–6.

    Article  CAS  PubMed  Google Scholar 

  130. Ares MP, Kallin B, Eriksson P, Nilsson J. Oxidized LDL induces transcription factor activator protein-1 but inhibits activation of nuclear factor-kB in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1995;15:1584–90.

    CAS  PubMed  Google Scholar 

  131. Rao GN, Lassegue B, Griendling KK, Alexander RW. Hydrogen peroxide stimulates transcription of c-jun in vascular smooth muscle cells: role of arachidonic acid. Oncogene 1993;8:2759–64.

    CAS  PubMed  Google Scholar 

  132. Ruef J, Rao GN, Li F, et al. Induction of rat aortic smooth muscle cell growth by the lipid peroxidation product 4-hydroxy-2-nonenal. Circulation 1998;97:1071–8.

    CAS  PubMed  Google Scholar 

  133. Wung BS, Cheng JJ, Hsieh HJ, Shyy YJ, Wang DL. Cyclic strain-induced monocyte chemotactic protein-1 gene expression in endothelial cells involves reactive oxygen species activation of activator protein 1. Circ Res 1997;81:1–7.

    CAS  PubMed  Google Scholar 

  134. Roebuck KA, Rahman A, Lakshminarayanan V, Janakidevi K, Malik AB. H2O2 and tumor necrosis factor-alpha activate intercellular adhesion molecule 1 (ICAM-1) gene transcription through distinct cis-regulatory elements within the ICAM-1 promoter. J Biol Chem 1995;270:18966–74.

    Article  CAS  PubMed  Google Scholar 

  135. Rao GN, Lassegue B, Griendling KK, Alexander RW, Berk BC. Hydrogen peroxide-induced c-fos expression is mediated by arachidonic acid release: role of protein kinase C. Nucleic Acids Res 1993;21:1259–63.

    CAS  PubMed  Google Scholar 

  136. Barchowsky A, Munro SR, Morana SJ, Vincenti MP, Treadwell M. Oxidant-sensitive and phosphorylation-dependent activation of NF-kappa B and AP-1 in endothelial cells. Am J Physiol 1995;269:L829–36.

    CAS  PubMed  Google Scholar 

  137. Del Arco PG, Martinez-Martinez S, Calvo V, Armesilla AL, Redondo JM. Antioxidants and AP-1 activation: A brief overview. Immunobiol 1997;198:273–8.

    Google Scholar 

  138. Maruyama I, Shigeta K, Miyahara H, et al. Thrombin activates NF-kappa B through thrombin receptor and results in proliferation of vascular smooth muscle cells: role of thrombin in atherosclerosis and restenosis. Ann N Y Acad of Sci 1997;811:429–36.

    CAS  Google Scholar 

  139. Brand K, Page S, Rogler G, et al. Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion. J Clin Invest 1996;97:1715–22.

    CAS  PubMed  Google Scholar 

  140. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 1991;10:2247–58.

    CAS  PubMed  Google Scholar 

  141. Schreck R, Albermann K, Baeuerle PA. Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells. Free Radic Res. Commun. 1992;17:221–37.

    CAS  PubMed  Google Scholar 

  142. Suzuki YJ, Packer L. Inhibition of NF-kB activation by vitamin E derivatives. Biochem Biophys Res Commun 1993;193:227–83.

    Article  Google Scholar 

  143. Kretz-Remy C, Mehlen P, Mirault ME, Arrigo AP. Inhibition of I kappa B-alpha phosphorylation and degradation and subsequent NF-kappa B activation by glutathione peroxidase overexpression. J Cell Biol 1996;133:1083–93.

    Article  CAS  PubMed  Google Scholar 

  144. Hayashi T, Ueno Y, Okamoto T. Oxidoreductive regulation of nuclear factor kappa B. Involvement of a cellular reducing catalyst thioredoxin. J Biol Chem 1993;268:11380–8.

    CAS  PubMed  Google Scholar 

  145. Grimm S, Baeuerle PA. The inducible transcription factor NF-kB: Structure-function relationship of its protein subunits. Biochem J 1993;290:297–308.

    CAS  PubMed  Google Scholar 

  146. Chan MM. Inhibition of tumor necrosis factor by curcumin, a phytochemical. Biochem Pharmacol 1995;49:1551–6.

    Article  CAS  PubMed  Google Scholar 

  147. Pierce JW, Read MA, Ding H, Luscinskas FW, Collins T. Salicylates inhibit I kappa B-alpha phosphorylation, endothelial-leukocyte adhesion molecule expression, and neutrophil transmigration. J Immunol 1996;156:3961–9.

    CAS  PubMed  Google Scholar 

  148. Gerritsen ME, Carley WW, Ranges GE, et al. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression. Am J Pathol 1995; 147:278–92.

    CAS  PubMed  Google Scholar 

  149. Wolle J, Hill RR, Ferguson E, et al. Selective inhibition of tumor necrosis factor-induced vascular cell adhesion molecule-1 gene expression by a novel flavonoid. Lack of effect on transcription factor NF-kappa B. Arterioscler Thromb Vasc Biol 1996;16:1501–8.

    CAS  PubMed  Google Scholar 

  150. Kunsch C LJ, Grey JY, Olliff LK, et al. Selective inhibition of endothelial and monocyte redox-sensitive genes by AGI-1067: a novel antioxidant and anti-inflammatory agent. J of Pharmacol and Exp Ther 2004;308:820–9.

    Article  CAS  Google Scholar 

  151. Schubert SY, Neeman I, Resnick N. A novel mechanism for the inhibition of NF-kappaB activation in vascular endothelial cells by natural antioxidants. FASEB J 2002;16:1931–3.

    CAS  PubMed  Google Scholar 

  152. Chen XL, Kunsch C. Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. Curr Pharm Des 2004;10:879–91.

    Article  CAS  PubMed  Google Scholar 

  153. Rushmore TH, Morton MR, Pickett CB. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem 1991;266:11632–9.

    CAS  PubMed  Google Scholar 

  154. Wasserman WW, Fahl WE. Functional antioxidant responsive elements. Proc Natl Acad Sci U S A 1997;94:5361–6.

    Article  CAS  PubMed  Google Scholar 

  155. Prestera T, Talalay P. Electrophile and antioxidant regulation of enzymes that detoxify carcinogens. Proc Natl Acad Sci U S A 1995;92:8965–9.

    Article  CAS  PubMed  Google Scholar 

  156. Jaiswal AK. Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic Biol Med 2000;29:254–62.

    Article  CAS  PubMed  Google Scholar 

  157. Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL. Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 1999;274:26071–8.

    Article  CAS  PubMed  Google Scholar 

  158. Tsuji Y, Ayaki H, Whitman SP, Morrow CS, Torti SV, Torti FM. Coordinate transcriptional and translational regulation of ferritin in response to oxidative stress. Mol Cel Biol 2000;20:5818–27.

    Article  CAS  Google Scholar 

  159. Itoh K, Chiba T, Takahashi S, et al. An NrG/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 1997;236:313–22.

    Article  CAS  PubMed  Google Scholar 

  160. Chan K, Kan YW. Nrf2 is essential for protection against acute pulmonary injury in mice. Proc Natl Acad Sci U S A 1999;96:12731–6.

    Article  CAS  PubMed  Google Scholar 

  161. Bea F, Hudson FN, Chait A, Kavanagh TJ, Rosenfeld ME. Induction of glutathione synthesis in macrophages by oxidized low-density lipoproteins is mediated by consensus antioxidant response elements. Circ Res 2003;92:386–93.

    Article  CAS  PubMed  Google Scholar 

  162. Ishii T, Itoh K, Ruiz E, et al. Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: activation by oxidatively modified LDL and 4-hydroxynonenal. Circ Res 2004;94:609–16.

    Article  CAS  PubMed  Google Scholar 

  163. Buckley BJ, Marshall ZM, Whorton AR. Nitric oxide stimulates Nrf2 nuclear translocation in vascular endothelium. Biochem Biophys Res Commun 2003;307:973–9.

    Article  CAS  PubMed  Google Scholar 

  164. Chen XL, Varner SE, Rao AS, et al. Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J Biol Chem 2003;278:703–11.

    Article  CAS  PubMed  Google Scholar 

  165. Itoh K, Tong KI, Yamamoto M. Molecular mechanism activating Nrf2-Keapl pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 2004;36:1208–13.

    Article  CAS  PubMed  Google Scholar 

  166. Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 2003;43:233–60.

    Article  CAS  PubMed  Google Scholar 

  167. Kong AN, Owuor E, Yu R, et al. Induction of xenobiotic enzymes by the MAP kinase pathway and the antioxidant or electrophile response element (ARE/EpRE). Drug Metab Rev 2001;33:255–71.

    Article  CAS  PubMed  Google Scholar 

  168. Huang HC, Nguyen T, Pickett CB. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 2002;277:42769–74.

    Article  CAS  PubMed  Google Scholar 

  169. Numazawa S, Ishikawa M, Yoshida A, Tanaka S, Yoshida T. Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress. Am J Physiol Cell Physiol 2003;285:C334–42.

    CAS  PubMed  Google Scholar 

  170. Chen XL, Thomas S, Wasserman MA, Kunsch C. Activation of the Nrf2/Antioxidant response element pathway protects endothelial cells from oxidant Injury and Inhibits redox-sensitive inflammatory gene expression: A novel vascular protective pathway. Circulation 2003;108:IV–304.

    Google Scholar 

  171. Lu D, Maulik N, Moraru, II, Kreutzer DL, Das DK. Molecular adaptation of vascular endothelial cells to oxidative stress. Am J Physiol 1993;264:C715–22.

    CAS  PubMed  Google Scholar 

  172. Satriano JA, Shuldiner M, Hora K, Xing Y, Shan Z, Schlondorff D. Oxygen radicals as second messengers for expression of the monocyte chemoattractant protein, JE/MCP-1, and the monocyte colony-stimulating factor, CSF-1, in response to tumor necrosis factor-alpha and immunoglobulin G. Evidence for involvement of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidase. J Clin Invest 1993;92:1564–71.

    Article  CAS  PubMed  Google Scholar 

  173. Chen XL, Tummala PE, Obrych M, Alexander RW, Medford RM. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in vascular smooth muscle cells. Circ Res 1998;83:952–9.

    CAS  PubMed  Google Scholar 

  174. Marui N, Offermann MK, Swerlick R, et al. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest 1993;92:1866–74.

    CAS  PubMed  Google Scholar 

  175. Weber C, Erl W, Pietsch A, Strobel M, Ziegler-Heitbrock H, Weber P. Antioxidants inhibit monocyte adhesion by suppressing nuclear factor-kB mobilization and induction of vascular cell adhesion molecule-1 in endothelial cells stimulated to generate radicals. Arterio Thromb 1994;14:1665–73.

    CAS  Google Scholar 

  176. Spiecker M, Darius H, Kaboth K, Hubner F, Liao JK. Differential regulation of endothelial cell adhesion molecule expression by nitric oxide donors and antioxidants. J Leukoc Biol 1998;63:732–9.

    CAS  PubMed  Google Scholar 

  177. Weber DS, Taniyama Y, Rocic P, et al. Phosphoinositide-dependent kinase 1 and p21-activated protein kinase mediate reactive oxygen species-dependent regulation of platelet-derived growth factor-induced smooth muscle cell migration. Circ Res 2004;94:1219–26.

    Article  CAS  PubMed  Google Scholar 

  178. Chua CC, Hamdy RC, Chua BH. Upregulation of vascular endothelial growth factor by H2O2 in rat heart endothelial cells. Free Radic Biol Med 1998;25:891–7.

    Article  CAS  PubMed  Google Scholar 

  179. Galis ZS, Asanuma K, Godin D, Meng X. N-acetyl-cysteine decreases the matrix-degrading capacity of macrophage-derived foam cells: new target for antioxidant therapy. Circulation 1998;97:2445–53.

    CAS  PubMed  Google Scholar 

  180. Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 1991;88:1785–92.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Kunsch, C., Chen, X. (2006). Reactive Oxygen Species as Mediators of Signal Transduction in Cardiovascular Diseases. In: Bourassa, M.G., Tardif, JC. (eds) Antioxidants and Cardiovascular Disease. Developments in Cardiovascular Medicine, vol 258. Springer, Boston, MA. https://doi.org/10.1007/0-387-29553-4_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-29553-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-29552-7

  • Online ISBN: 978-0-387-29553-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics