Skip to main content
Log in

Comparing approximations to spatio-temporal models for epidemics with local spread

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Analytical methods for predicting and exploring the dynamics of stochastic, spatially interacting populations have proven to have useful application in epidemiology and ecology. An important development has been the increasing interest in spatially explicit models, which require more advanced analytical techniques than the usual mean-field or mass-action approaches. The general principle is the derivation of differential equations describing the evolution of the expected population size and other statistics. As a result of spatial interactions no closed set of equations is obtained. Nevertheless, approximate solutions are possible using closure relations for truncation. Here we review and report recent progress on closure approximations applicable to lattice models with nearest-neighbour interactions, including cluster approximations and elaborations on the pair (or pairwise) approximation. This study is made in the context of an SIS model for plant-disease epidemics introduced in Filipe and Gibson (1998, Studying and approximating spatio-temporal models for epidemic spread and control, Phil. Trans. R. Soc. Lond. B 353, 2153–2162) of which the contact process [Harris, T. E. (1974), Contact interactions on a lattice, Ann. Prob. 2, 969] is a special case. The various methods of approximation are derived and explained and their predictions are compared and tested against simulation. The merits and limitations of the various approximations are discussed. A hybrid pairwise approximation is shown to provide the best predictions of transient and long-term, stationary behaviour over the whole parameter range of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ben Avraham, D. and J. Kohler (1992). Mean-field (N,M)-cluster approximation for lattice models. Phys. Rev. A 45, 8358–8370.

    Article  Google Scholar 

  • Bethe, H. A. (1935). Statistical theory of superlattices. Proc. R. Soc. A 150, 552–575.

    MATH  Google Scholar 

  • Buttell, L., J. T. Cox and R. Durrett (1993). Estimating the critical values of stochastic growth models. J. Appl. Probab. 30, 455–461.

    Article  MathSciNet  MATH  Google Scholar 

  • Cardy, J. L. and R. L. Sugar (1980). Directed percolation and Reggeon field theory. J. Phys. A 13, L423.

    Article  MathSciNet  Google Scholar 

  • Ellner, S. P., A. Sasaki, Y. Haraguchi and H. Matsuda (1998). Speed of invasion in population models: pair-edge approximation. J. Math. Biol. 36, 469–484.

    Article  MathSciNet  MATH  Google Scholar 

  • Filipe, J. A. N. (1999). Hybrid closure-approximation to epidemic models. Physica A 266, 238–241.

    Article  Google Scholar 

  • Filipe, J. A. N. and G. J. Gibson (1998). Studying and approximating spatio-temporal models for epidemic spread and control. Phil. Trans. R. Soc. Lond. B 353, 2153–2162.

    Article  Google Scholar 

  • Filipe, J. A. N. and M. M. Maule (2001). Effects of dispersal mechanisms on spatio-temporal development of epidemics, submitted.

  • Filipe, J. A. N. and G. J. Rodgers (1995). Theoretical and numerical studies of chemisorption on a line with precursor layer diffusion. Phys. Rev. E 52, 6044–6054.

    Article  Google Scholar 

  • Gibson, G. J. (1997a). Investigating mechanisms of spatio-temporal epidemic spread using stochastic models. Phytopathology 87, 139–146.

    Google Scholar 

  • Gibson, G. J. (1997b). Markov chain Monte Carlo methods for fitting spatiotemporal stochastic models in plant epidemiology. Appl. Stat. C 46, 215–233.

    Article  MATH  Google Scholar 

  • Gottwald, T. R., G. J. Gibson, S. M. Garnsey and M. Irey (1999). Examination of the effect of aphid vector population composition on the spatial dynamics of citrus tristeza virus spread via stochastic modelling. Phytopathology 89, 603–608.

    Google Scholar 

  • Harris, T. E. (1974). Contact interactions on a lattice. Ann. Prob. 2, 969.

    MATH  Google Scholar 

  • Hiebeler, D. (1997). Stochastic spatial models: from simulations to Mean Field and local structure approximations. J. Theor. Biol. 187, 307–319.

    Article  Google Scholar 

  • Jeger, M. J. (1986). The potential of analytic compared with simulation approaches to modelling in plant disease epidemiology, in Plant Disease Epidemiology. Vol. 1: Population Dynamics and Management, K. J. Leonard and W. E. Fry (Eds), New York: Macmillan.

    Google Scholar 

  • Jeger, M. J. (Ed.) (1989). Spatial Components of Plant Disease Epidemics, Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Jeger, M. J. and M. S. Chan (1995). Theoretical aspects of epidemics—uses of analytical models to make strategic management decisions. Can. J. Plant Pathol. 17, 109–114.

    Article  Google Scholar 

  • Jeger, M. J. and F. van den Bosch (1994). Threshold criteria for model-plant disease epidemics. 1 Asymptotic results. Phytopathology 84, 24–27.

    Google Scholar 

  • Jeger, M. J., F. van den Bosch, L. V. Madden and J. Holt (1998). A model for analysing plant-virus transmission characteristics and epidemic development. IMA J. Math. Appl. Med. Biol. 15, 1–18.

    MATH  Google Scholar 

  • Keeling, M. J., D. A. Rand and A. J. Morris (1997). Correlation models for childhood epidemics. Proc. R. Soc. Lond. B 264, 1149–1156.

    Article  Google Scholar 

  • Kikuchi, R. (1951). Theory of cooperative phenomena. Phys. Rev. 81, 988–1003.

    Article  MATH  MathSciNet  Google Scholar 

  • Kramers, H. A. and G. H. Wannier (1941). Statistics of the two-dimensional ferromagnet. Phys. Rev. 60, 252–263.

    Article  MathSciNet  MATH  Google Scholar 

  • Levin, S. A. and R. Durrett (1997). From individuals to epidemics. Phil. Trans. R. Soc. Lond. B 351, 1615–1621.

    Google Scholar 

  • Liggett, T. M. (1999). Stochastic Interacting Systems, New York: Springer.

    MATH  Google Scholar 

  • Matsuda, H., N. Ogita, A. Sasaki and K. Sato (1992). Statistical mechanics of population—the lattice Lotka-Volterra model. Prog. Theor. Phys. 88, 1035–1049.

    Article  Google Scholar 

  • Maule, M. M. and J. A. N. Filipe (2001). Modelling epidemics with anisotropic spread (in preparation).

  • Mollison, D. (Ed.) (1994). Epidemic Models and their Relation to Data, Cambridge: Cambridge University Press.

    Google Scholar 

  • Sato, K., H. Matsuda and A. Sasaki (1994). Pathogen invasion and host extinction in lattice structured populations. J. Math. Biol. 32, 251–268.

    Article  MATH  Google Scholar 

  • Stanley, E. H. (1972). Introduction to Phase Transitions and Critical Phenomena, U.S.A.: Oxford University Press, Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. N. Filipe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filipe, J.A.N., Gibson, G.J. Comparing approximations to spatio-temporal models for epidemics with local spread. Bull. Math. Biol. 63, 603–624 (2001). https://doi.org/10.1006/bulm.2001.0234

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2001.0234

Keywords

Navigation