Skip to main content
Log in

Development and validation of a spatially explicit individual-based mixed crop growth model

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Spatial disposition of plants in intercrops, and differences in sowing time between species, can strongly affect their ecological interactions and, in consequence, the system’s viability and performance. Empirical exploration of a wide range of spatial and temporal plant arrangements is costly and time-consuming. Modelling the growth of mixed crops is a tool which, combined with empirical tests, can greatly reduce the time and investment required for this task. Spatially explicit, individual-based dynamic models seem well suited for this purpose; their exploration and experimental validation for the case of simple, two-species, artificial plant communities, can also provide further insight as to how the spatial and temporal scales of a plant’s multispecific neighbourhood affect its growth and performance. The aim of this investigation was to further develop a published spatially explicit individual-based mixed crop growth model [Vandermeer, J. H. (1989). The Ecology of Intercropping, Cambridge, U.K.: Cambridge University Press, p. 237], and to validate it experimentally. With this purpose in mind: (1) computer programs to simulate individual plant growth and to perform statistical analysis of both deterministic and stochastic versions of the model were developed; (2) the model was parametrized using a complex experimental diculture with several cohorts and spatial arrangements; (3) the predictive capacity of the model was tested using independent spatio-temporal experimental arrangements; (4) a modified version of the model was written, which abandons the assumption of linearity of the neighbourhood index at the cost of increasing the number of parameters; (5) The performance of stochastic versions of both Vandermeer’s and our modified model were compared, employing a non-parametric measure of goodness of fit. We conclude that this approach to modelling plant growth subject to intra and interspecific competition is a remarkably efficient, general, conceptually elegant, heuristic tool whose predictive power can be further improved when nonlinear terms are introduced into the neighbourhood competition index, as done in our modified version of Vandermeer’s model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal, P. (1995). Uncertainties in crop, soil and weather inputs used in growth models: implications for simulated outputs and their applications. Agric. Syst. 48, 361–384.

    Article  Google Scholar 

  • Aikman, D. (1992). Modeling of growth and competition in plant monocultures, in Individual-based Models and Approaches in Ecology, Populations, Communities and Ecosystems, D. De Angelis et al. (Eds), USA: Routledge, Chapman & Hall, pp. 472–491.

    Google Scholar 

  • Altieri, M. (1992). Biodiversidad, Agroecologia y Manejo de Plagas, Chile: Cetal Ediciones, p. 162.

    Google Scholar 

  • Arias, F., H. Dapaah, S. Ennin and M. Gyampoh (1990). Effect of chronological arrangement, spatial arrangement and varietal combination on yield and economic feasibility of Maize C Cowpea intercropped, in Research Methods for Cereal/Legume Intercropping: Proccedings of a Workshop on Research Methods for Cereal/Legume Intercropping in Eastern an Southern Africa, S. A. P. Waddington et al. (Eds), México: D.F. CIMMYT, pp. 81–88.

    Google Scholar 

  • Benjamin, L. (1988). A single equation to quantify the hierarchy in plant size induced by competition within monocultures. Ann. Bot. 62, 199–214.

    Google Scholar 

  • Bonan, G. (1988). The size structure of theoretical plant populations: spatial patterns and neighborhood effects. Ecology 69, 1721–1730.

    Article  Google Scholar 

  • Boucher, D. H. (1985). The Biology of Mutualism: Ecology and Evoultion, London: Croom Helm, p. 388.

    Google Scholar 

  • Bouman, B., H. Van Keulen, H. Van Laar and R. Rabbinge (1996). The “School of de Wit” crop growth simulation models: a pedigree and historical overview. Agric. Syst. 52, 171–198.

    Article  Google Scholar 

  • Briones, O., C. Montaña and E. Ezcurra (1996). Competition between three Chihuahuan desert species: evidence from plant size-distance relations and root distribution. J. Vegetation Sci. 7, 453–460.

    Article  Google Scholar 

  • Caldwell, R. and J. Hansen (1993). Simulation of multiple cropping systems with Cropsys, in Systems Approaches for Agricultural Development, Penning de Vries et al. (Eds), The Netherlands: Kluwer Academic Publishers, pp. 397–412.

    Google Scholar 

  • Callaway, R. (1994). Facilitative and interfering effects of Arthrocnemum subterminale on winter annuals. Ecology 75, 681–686.

    Article  Google Scholar 

  • Casti, J. L. (1992). Reality Rules, Picturing the World in Mathematics, New York: John Wiley and Sons, p. 409.

    Google Scholar 

  • Chavero, C. and V. Fernández (1994). Efecto de las densidades de poblaciíon en diferentes arreglos topológicos en la producción de huazontle (Chenopodium nuttalliae Saff.) en Chapingo, México. Rev. Chapingo, Ser. Horticultura 2, 115–118.

    Google Scholar 

  • De Angelis, D. and K. A. Gross (1992). Which individual-based approach is most appropriate for a given problem? in Individual-based Models and Approaches in Ecology. Populations, Communities and Ecosystems, D. De Angelis et al. (Eds), USA: Routledge, Chapman & Hall, pp. 67–87.

    Google Scholar 

  • De Wit, C. T. (1960a). On Competition, Wageningen: Instituut voor biologisch en scheikundig onderzoek van landbouwgewassen. Verslagen Landbouwkundige Onderzoekingen.

    Google Scholar 

  • De Wit, C. T. (1960b). On Competition, Vol. 66, Instituut voor biologisch en scheikundig onderzoek van landbouwgewassen. Verslagen Landbouwkundige Onderzoekingen, pp. 1–81.

    Google Scholar 

  • Donald, C. M. (1958). The interaction of competition for light and for nutrients. Aust. J. Agric. Res. 9, 421–435.

    Article  Google Scholar 

  • Edwards, C. (1989). The importance of integration in sustainable agricultural systems. Agric. Ecosystems Environ. 27, 25–35.

    Article  Google Scholar 

  • Edwards, C., T. Grove, R. Harwood and C. Pierce Colfer (1993). The role of agroecology and integrated farming systems in agricultural sustainability. Agric. Ecosystems Environ. 46, 99–121.

    Article  Google Scholar 

  • Ellison, A. and D. Rabinowitz (1989). Effects of plant morphology and emergence time on size hierarchy formation in experimental populations of two varieties of cultivated peas (Pisum sativum). Am. J. Bot. 76, 27–436.

    Article  Google Scholar 

  • Federer, W. T. (1993). Statistical Design and Analysis for Intercropping Experiments, Vol. 1, Two Crops, Springer Series in Statistics, Springer-Verlag, p. 298.

    MathSciNet  Google Scholar 

  • Federer, W. T. (1999). Statistical Design and Analysis for Intercropping Experiments, Vol. 2, Three or more Crops, Springer Series in Statistics, Springer-Verlag, p. 262.

    MathSciNet  Google Scholar 

  • Firbank, L. and A. Watkinson (1990). On the effects of competition: from monocultures to mixtures, in Perspectives on Plant Competition, J. Grace et al. (Eds), USA: San Diego, California, Academic Press, pp. 165–192.

    Google Scholar 

  • Ford, D. and K. Sorrensen (1992). Theory and models of inter-plant competition as a spatial process, in Individual-based Models and Approaches in Ecology. Populations, Communities and Ecosystems, De Angelis et al. (Eds), USA: Routledge, Chapman & Hall, pp. 363–407.

    Google Scholar 

  • Fowler, N. (1984). The role of germination date, spatial arrangement, and neighbourhood effects in competitive interactions in Linum. J. Ecol. 72, 307–318.

    Google Scholar 

  • Fukai, S. and B. Trenbath (1993). Processes determining intercrop productivity and yields of component crops. Fied Crops Res. 34, 247–271.

    Article  Google Scholar 

  • García-Barrios, L. (1998). Desarrollo y evaluación de un modelo dinámico espacial del crecimiento de cultivos asociados, tesis doctoral, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico, D.F., p. 99.

    Google Scholar 

  • Gerry, A. and S. Wilson (1995). The influence of initial size on the competitive responses of six plant species. Ecology 76, 272–279.

    Article  Google Scholar 

  • Hakanson, L. (1995). Optimal size of predictive models. Ecol. Model. 78, 195–204.

    Article  Google Scholar 

  • Harper, J. (1990). Population Biology of Plants, 1st edn (1997), London, NW1: Academic Press Ltd, p. 890-(eighth impression).

    Google Scholar 

  • Kanwar, J. (1993). Influence of spacing and time of sowing on growth and seed yield of radish (Raphanus sativus). Indian J. Agric. Sci. 63, 351–353.

    Google Scholar 

  • Kropff, M. J. (1988). Modelling the effects of weeds on crop production. Weed Res. 28, 465–471.

    Google Scholar 

  • Kropff, M. J. (1993). Eco-physiological models for crop-weed competition, in Modelling Crop-weed Interactions, M. J. Kropff et al. (Eds), Wallingford, Oxon, U.K.: CAB International, pp. 25–32.

    Google Scholar 

  • Kropff, M. J. and L. A. P. Lotz (1993). Empirical models for crop-weed interactions, in Modelling Crop-weed Interactions, M. J. Kropff et al. (Eds), Wallingford, Oxon, U.K.: CAB International, pp. 9–24.

    Google Scholar 

  • Kropff, M. J. and C. J. T. Spitters (1991). A simple model for crop loss by weed competition on basis of early observation on relative leaf area of the weeds. Weed Res. 31, 97–105.

    Google Scholar 

  • Lotka, A. J. (1925). Elements of Physical Biology, Baltimore: Williams & Wilkins.

    MATH  Google Scholar 

  • Mack, R. and J. Harper (1977). Interference in dune annuals: spatial pattern and neighbourhood effects. J. Ecol. 65, 345–363.

    Google Scholar 

  • Mayer-Foulkes, D. and L. García Barrios (Unpublished). VCROPS: A simulation and statistical tool for autonomous, spatially explicit, individual-based intercrop growth models. (Pascal language computer program).

  • MicroMath Scientific Software (1995). Scientist for experimental data fitting. Microsoft Windows Version 2.1, (manual), p. 513.

  • Natarajan, M. (1990). Spatial arrangement of the component crops in developing intercropping systems: some concepts and methodologies, in Research Methods for Cereal/Legume Intercropping: Proccedings of a Workshop on Research Methods for Cereal/Legume Intercropping in Eastern an Southern Africa, S. Waddington et al. (Eds), M’exico, D. F. CIMMYT: pp. 68–73.

    Google Scholar 

  • Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vetterling (1988). Numerical recipes in pascal, The Art of Scientific Computing, Cambridge, U.K.: Cambridge University Press, p. 730.

    Google Scholar 

  • Pugnaire, F., P. Haase and J. Puigdefábregas (1996). Facilitation between higher plant species in a semiarid environment. Ecology 77, 420–1426.

    Article  Google Scholar 

  • Ramírez, N., M. Gonzáles and E. García-Moya (1996). Establecimiento de Pinus spp. y Quercus spp. en matorrales y pastizales de Los Altos de Chiapas, México. Agrociencia 30, 249–257.

    Google Scholar 

  • Richards, F. J. (1959). A flexible growth function for empirical use. J. Exp. Bot. 10, 290–300.

    Google Scholar 

  • Ross, M. and J. Harper (1972). Occupation of biological space during seedling establishment. J. Ecol. 60, 77–88.

    Google Scholar 

  • Siegel, S. (1956). Non-parametric Statistics for the Behavioural Sciences, New York: McGraw-Hill, p. 344.

    Google Scholar 

  • Singh, N. B., P. P. Singh and K. P. Nair (1986). Effect of legume intercropping on nitrogen enrichment, bacterial activity, and productivity of associated maize crops. Exp. Agric. 22, 339–344.

    Article  Google Scholar 

  • Thomas, S. and J. Weiner (1989). Including competitive asymmetry in measures of local interference in plant populations. Oecologia (Berlin) 80, 349–355.

    Article  Google Scholar 

  • Thornton, P., J. B. Dent and R. Caldwell (1990). Applications and issues in the modeling of intercropping systems in the tropics. Agric. Ecosystems Environ. 31, 133–146.

    Article  Google Scholar 

  • Tilman, D. (1996). Biodiversity: population versus ecosystem stability. Ecology 77, 350–363.

    Article  Google Scholar 

  • Tilman, D. et al. (Eds) (1997). Spatial Ecology. The Role of Space in Population Dynamics and Interspecific Interactions, Monographs in Population Biology 30, Princeton, N.J.: Princeton University Press, p. 365.

    Google Scholar 

  • Tilman, D., D. Wedin and J. Knops (1996). Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720.

    Article  Google Scholar 

  • Vandermeer, J. H. (1981). The interference production principle: an ecological theory for agriculture. BioScience 31, 361–364.

    Article  Google Scholar 

  • Vandermeer, J. H. (1989). The Ecology of Intercropping, Cambridge, U.K.: Cambridge University Press, p. 237.

    Google Scholar 

  • Vandermeer, J. H. (1995). The ecological basis of alternative agriculture. Annu. Rev. Ecol. Sust. 26, 201–224.

    Article  MathSciNet  Google Scholar 

  • Volterra, V. (1926). Variations and fluctuations in the number of individuals in animal species living together. J. Cons. perm. int. Ent. Mer. 3, 3–51.

    Google Scholar 

  • Waltner, T. D. (1996). Ecosystem health-a framework for implementing sustainability in agriculture. BioScience 46, 86–689.

    Google Scholar 

  • Watkinson, A. (1980). Density dependence in single species population of plants. J. Theor. Biol. 83, 345–357.

    Article  Google Scholar 

  • Weiner, J. and O. Solbrig (1984). The meaning and measurement of size hierarchies in plant populations. Oecologia (Berlin) 61, 334–336.

    Article  Google Scholar 

  • Wilson, B. (1988). The effect on initial advantage on the course of plant competition. OIKOS 51, 19–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis García-Barrios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Barrios, L., Mayer-Foulkes, D., Franco, M. et al. Development and validation of a spatially explicit individual-based mixed crop growth model. Bull. Math. Biol. 63, 507–526 (2001). https://doi.org/10.1006/bulm.2000.0226

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2000.0226

Keywords

Navigation