Skip to main content
Log in

Population dependent Fourier decomposition of fitness landscapes over recombination spaces: Evolvability of complex characters

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The effect of recombination on genotypes can be represented in the form of P-structures, i.e., a map from the set of pairs of genotypes to the power set of genotypes. The interpretation is that the P-structure maps the pair of parental genotypes to the set of recombinant genotypes which result from the recombination of the parental genotypes. A recombination fitness landscape is then a function from the genotypes in a P-structure to the real numbers. In previous papers we have shown that the eigenfunctions of (a matrix associated with) the P-structure provide a basis for the Fourier decomposition of arbitrary recombination landscapes.

Here we generalize this framework to include the effect of genotype frequencies, assuming linkage equilibrium. We find that the autocorrelation of the eigenfunctions of the population-weighted P-structure is independent of the population composition. As a consequence we can directly compare the performance of mutation and recombination operators by comparing the autocorrelations on the finite set of elementary landscapes. This comparison suggests that point mutation is a superior search strategy on landscapes with a low order and a moderate order of interaction p < n/3 (n is the number of loci). For more complex landscapes 1-point recombination is superior to both mutation and uniform recombination, but only if the distance among the interacting loci (defining length) is minimal.

Furthermore we find that the autocorrelation on any landscape is increasing as the distribution of genotypes becomes more extreme, i.e., if the population occupies a location close to the boundary of the frequency simplex. Landscapes are smoother the more biased the distribution of genotype frequencies is. We suggest that this result explains the paradox that there is little epistatic interaction for quantitative traits detected in natural populations if one uses variance decomposition methods while there is evidence for strong interactions in molecular mapping studies for quantitative trait loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altenberg, L. (1995). The Schema theorem and the Price’s theorem, in Foundations of Genetic Algorithms, D. Whitley and M. D. Vose (Eds), Cambridge, MA: MIT Press, pp. 23–49.

    Google Scholar 

  • Altenberg, L. (1997). Fitness distance correlation analysis: an instructive counterexample, in Proceedings of the 7th International Conference on Genetic Algorithms (ICGA 97), T. Baeck (Ed.), San Fransisco, CA: Morgan Kaufmann, pp. 57–64.

    Google Scholar 

  • Altenberg, L. and M. W. Feldman (1987). Selection, generalized transmission, and the evolution of modifier genes. I. The reduction principle. Genetics 117, 559–572.

    Google Scholar 

  • Baatz, M. and G. P. Wagner (1997). Adaptive inertia caused by hidden pleiotropic effects. Theor. Pop. Biol. 51, 49–66.

    Article  Google Scholar 

  • Babel, L., I. V. Chuvaeva, M. Klin and D. V. Pasechnik (1995). Algebraic Combinatorics in Mathematical Chemistry. Methods and Algorithms. II. Program Implementation of the Weisfeiler-Leman Algorithm, TUM-M9701, Garching, Germany: TU München.

    Google Scholar 

  • Babel, L., S. Baumann, M. Lüdecke and G. Tinhofer (1997). STABCOL: Graph Isomorphism Testing Based on the Weisfeiler-Leman Algorithm, TUM-M9702, Garching, Germany: TU München.

    Google Scholar 

  • Bennett, J. H. (1954). On the theory of random mating. Ann. Eugen. 18, 311–317.

    Google Scholar 

  • Berge, C. (1989). Hypergraphs, Amsterdam NL: Elsevier.

    Google Scholar 

  • Besag, J. (1974). Spatial Interactions and the Statistical Analysis of Lattice Systems. Amer. Math. Monthly 81, 192–236.

    MathSciNet  Google Scholar 

  • Bhattacharya, R. N. and E. C. Waymire (1990). Stochastic Processes with Applications, New York: Wiley.

    Google Scholar 

  • Bryant, E. H., S. A. McCommas and L. M. Combs (1986). The effect of an experimental bottleneck upon genetic variation in the house fly. Genetics 114, 1191–1211.

    Google Scholar 

  • Bürger, R. (1986). Constraints for the evolution of functionally coupled characters: a nonlinear analysis of a phenotypic model. Evolution 40, 182–193.

    Article  Google Scholar 

  • Bürger, R. (1998). Mathematical properties of mutation-selection models. Genetika 102/103, 279–298.

    Article  Google Scholar 

  • Cheverud, J. M. and E. J. Routman (1996). Epistasis as a source of increased additive genetic variance at population bottlenecks. Evolution 50, 1042–1051.

    Article  Google Scholar 

  • Crow, J. F. and M. Kimura (1965). Evolution in sexual and asexual populations. Am. Nat. 99, 439–450.

    Article  Google Scholar 

  • Crow, J. F. and M. Kimura (1970). An Introduction to Population Genetics Theory, New York: Harper and Row.

    Google Scholar 

  • Culberson, J. C. (1995). Mutation-crossover isomorphism and the construction of discriminating functions. Evol. Comp. 2, 279–311.

    Google Scholar 

  • Eigen, M., J. McCaskill and P. Schuster (1989). The molecular quasispecies. Adv. Chem. Phys. 75, 149–263.

    Google Scholar 

  • Eigen, M. and P. Schuster (1979). The Hypercycle, New York, Berlin: Springer.

    Google Scholar 

  • Fisher, R. A. (1930). The Genetical Theory of Natural Selection, Oxford: Clarendon Press.

    Google Scholar 

  • Flamm, C. (1998). RNA Folding Kinetics, PhD Thesis, University of Vienna.

  • Fogel, D. B. (1995). Evolutionary Computation, New York: IEEE Press.

    Google Scholar 

  • Fontana, W., P. F. Stadler, E. G. Bornberg-Bauer, T. Griesmacher, I. L. Hofacker, M. Tacker, P. Tarazona, E. D. Weinberger and P. Schuster (1993). RNA folding and combinatory landscapes. Phys. Rev. E 47, 2083–2099.

    Article  Google Scholar 

  • Frazzetta, T. H. (1975). Complex Adaptations in Evolving Populations, Sunderland, MA: Sinauer.

    Google Scholar 

  • García-Pelayo, R. and P. F. Stadler (1997). Correlation length, isotropy, and meta-stable states. Physica D 107, 240–254.

    Article  Google Scholar 

  • Gillespie, J. H. (1991). The Causes of Molecular Evolution, New York, Oxford: Oxford University Press.

    Google Scholar 

  • Gitchoff, P. and G. P. Wagner (1996). Recombination induced hypergraphs: a new approach to mutation-recombination isomorphism. Complexity 2, 47–43.

    Article  MathSciNet  Google Scholar 

  • Goodnight, C. J. (1987). On the effect of founder events on epistatic genetic variance. Evolution 41, 80–91.

    Article  Google Scholar 

  • Goodnight, C. J. (1988). Epistasis and the effect of founder events on the additive genetic variance. Evolution 42, 441–454.

    Article  Google Scholar 

  • Goodnight, C. J. (1995). Epistasis and the increase in additive genetic variance: implications for phase 1 of Wright’s shifting-balance process. Evolution 49, 502–511.

    Article  Google Scholar 

  • Happel, R. and P. F. Stadler (1996). Canonical approximation of fitness landscapes. Complexity 2, 53–58.

    Article  Google Scholar 

  • Hofbauer, J. and K. Sigmund (1988). Dynamical Systems and the Theory of Evolution, Cambridge: Cambridge University Press.

    Google Scholar 

  • Holland, J. H. (1993). Adaptation in Natural and Artificial Systems, Cambridge, MA: MIT Press.

    Google Scholar 

  • Hordijk, W. (1996). A measure of landscapes. Evol. Comput. 4, 335–360.

    Google Scholar 

  • Hordijk, W. (1997). Correlation analysis of the synchronizing-CA landscape. Physica D 107, 255–264.

    Article  Google Scholar 

  • Hordijk, W. and P. F. Stadler (1998). Amplitude spectra of fitness landscapes. J. Complex Syst. 1, 39–66.

    Article  Google Scholar 

  • Huynen, M. A., P. F. Stadler and W. Fontana (1996). Smoothness within ruggedness: the role of neutrality in adaptation. Proc. Natl. Acad. Sci. (USA) 93, 397–401.

    Article  Google Scholar 

  • Jones, T. (1995a). One operator, one landscape, Technical Report #95-02-025, Santa Fe Institute.

  • Jones, T. (1995b). Evolutionary algorithms, fitness landscapes, and search, PhD thesis, University of New Mexico, Albuquerque, NM.

    Google Scholar 

  • Kauffman, S. A. (1993). The Origin of Order, New York, Oxford: Oxford University Press.

    Google Scholar 

  • Kauffman, S. A. and S. Levin (1987). Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128, 11–45.

    MathSciNet  Google Scholar 

  • Laubichler, M. (1997). Identifying units of selection: conceptual and methodological issues, PhD thesis, Yale University, New Haven, CT.

    Google Scholar 

  • Lovász, L. (1975). Spectra of graphs with transitive groups. Periodica Math. Hung. 6, 191–195.

    Article  MATH  Google Scholar 

  • Lyubich, Y. I. (1992). Mathematical Structures in Population Genetics, Berlin: Springer.

    Google Scholar 

  • Mézard, M., G. Parisi and M. Virasoro (1987). Spin Glass Theory and Beyond, Singapore: World Scientific.

    Google Scholar 

  • Morgan, T. H. (1913). Heredity and Sex, New York: Columbia University Press.

    Google Scholar 

  • Nagylaki, T. (1992). Introduction to Theoretical Population Genetics, Berlin: Springer.

    Google Scholar 

  • Otto, S. P. and N. H. Barton (1997). The evolution of recombination: removing the limits to natural selection. Genetics 147, 879–906.

    Google Scholar 

  • Papadimitrou, C. H. and K. Steiglitz (1982). Combinatorial Optimization: Algorithms and Complexity, Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem Solving, Reading, MA: Addison-Wesley.

    Google Scholar 

  • Perelson, A. S. and S A. Kauffman (Eds) (1991). Molecular Evolution on Rugged Landscapes: Proteins, RNA, and the Immune System, Vol. 9, Santa Fe Institute Studies, Reading, MA: Addison-Wesley.

    Google Scholar 

  • Provine, W. B. (1986). Sewall Wright and Evolutionary Biology, Chicago, London: University of Chicago Press.

    Google Scholar 

  • Riedl, R. (1977). A systems-analytical approach to macroevolutionary phenomena. Q. Rev. Biol. 52, 351–370.

    Article  Google Scholar 

  • Robbins, R. B. (1918). Some applications of mathematics to breeding problems. III. Genetics 3, 375–389.

    Google Scholar 

  • Schuster, P. and P. F. Stadler (1994). Landscapes: complex optimization problems and biopolymer structures. Computers & Chem. 18, 295–314.

    Article  Google Scholar 

  • Schuster, P., P. F. Stadler and A. Renner (1997). RNA structures and folding: from conventional to new issues in structure predictions. Curr. Opinions Struct. Biol. 7, 229–235.

    Article  Google Scholar 

  • Serre, J.-P. (1977). Linear Representations of Finite Groups, New York, Heidelberg, Berlin: Springer.

    Google Scholar 

  • Stadler, P. F. (1995). Random walks and orthogonal functions associated with highly symmetric graphs. Discrete Math. 145, 229–238.

    Article  MATH  MathSciNet  Google Scholar 

  • Stadler, P. F. (1995). Towards a theory of landscapes, in Complex Systems and Binary Networks, R. Lopéz-Peña, R. Capovilla, R. García-Pelayo, H. Waelbroeck and F. Zertuche (Eds), Berlin, New York: Springer, pp. 77–163.

    Google Scholar 

  • Stadler, P. F. (1996). Landscapes and their correlation functions. J. Math. Chem. 20, 1–45.

    Article  MATH  MathSciNet  Google Scholar 

  • Stadler, P. F. and R. Happel (1999). Random field models for fitness landscapes. J. Math. Biol. 38, 435–478.

    Article  MathSciNet  Google Scholar 

  • Stadler, P. F. and G. P. Wagner (1998). The algebraic theory of recombination spaces. Evol. Comput. 5, 241–275.

    Google Scholar 

  • Stadler, P. F. (1999). Spectral landscape theory, in Evolutionary Dynamics—Exploring the Interplay of Selection, Neutrality, Accident, and Function, J. P. Crutchfield and P. Schuster (Eds), Oxford University Press, in press.

  • Stephens, C. R. and H. Waelbroeck (1998). Effective degrees of freedom in genetic algorithms. Phys. Rev. E 57, 3251–3264.

    Article  Google Scholar 

  • Vose, M. D. and A. H. Wright (1998a). The simple genetic algorithm and the Walsh transform. Part I: theory. Evol. Comput. 6, 253–274.

    Google Scholar 

  • Vose, M. D. and A. H. Wright (1998b). The simple genetic algorithm and the Walsh transform. Part II: The inverse. Evol. Comput. 6, 275–289.

    Google Scholar 

  • Wagner, G. P. (1988a). The influence of variation and of developmental constraints on the rate of multivariate phenotypic evolution. J. Evol. Biol. 1, 45–66.

    Article  Google Scholar 

  • Wagner, G. P. (1988b). The significance of developmental constraints for phenotypic evolution by natural selection, in Population Genetics and Evolution, G. deJong (Ed.), Berlin, Heidelberg: Springer, pp. 222–229.

    Google Scholar 

  • Wagner, G. P. and L. Altenberg (1995). Complex adaptations and the evolution of evolvability. Evolution 50, 967–976.

    Article  Google Scholar 

  • Wagner, G. P. and P. F. Stadler (1998). Complex adaptations and the structure of recombination spaces, in Algebraic Engineering, C Nehaniv and M Ito (Eds), Singapore: World Scientific, pp. 151–170. Proceedings of the Conference on Semi-Groups and Algebraic Engineering, University of Aizu, Japan.

    Google Scholar 

  • Weinberger, E. D. (1990). Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 63, 325–336.

    Article  MATH  Google Scholar 

  • Weinberger, E. D. (1991). Fourier and Taylor series on fitness landscapes. Biol. Cybern. 65, 321–330.

    Article  MATH  Google Scholar 

  • Whitlock, M. C., P. C. Phillips, F. B. Moore and S. J. Tonsor (1995). Multiple fitness peaks and epistasis. Ann. Rev. Ecol. Syst. 26, 601–629.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadler, P.F., Seitz, R. & Wagner, G.P. Population dependent Fourier decomposition of fitness landscapes over recombination spaces: Evolvability of complex characters. Bull. Math. Biol. 62, 399–428 (2000). https://doi.org/10.1006/bulm.1999.0167

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0167

Keywords

Navigation