Skip to main content
Log in

Landscapes and their correlation functions

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Fitness landscapes are an important concept in molecular evolution. Many important examples of landscapes in physics and combinatorial optimization, which are widely used as model landscapes in simulations of molecular evolution and adaptation, are “elementary”, i.e., they are (up to an additive constant) eigenfunctions of a graph Laplacian. It is shown that elementary landscapes are characterized by their correlation functions. The correlation functions are in turn uniquely determined by the geometry of the underlying configuration space and the nearest neighbor correlation of the elementary landscape. Two types of correlation functions are investigated here: the correlation of a time series sampled along a random walk on the landscape and the correlation function with respect to a partition of the set of all vertex pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wright, The roles of mutation, inbreeding, crossbreeding and selection in evolution, ed. D.F. Jones,Proc. 6th Int. Congress on Genetics, Vol. 1(1932) pp. 356–366.

  2. K. Binder and A.P. Young, Rev. Mod. Phys. 58 (1986) 801.

    Google Scholar 

  3. M. Mézard, G. Parisi and M. Virasoro,Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).

    Google Scholar 

  4. M. Garey and D. Johnson, it Computers and Intractability. A Guide to the Theory ofNP Completeness (Freeman, San Francisco, 1979).

    Google Scholar 

  5. M. Eigen, Die Naturwissensch.10 (1971) 465.

    Google Scholar 

  6. W. Fontana and P. Schuster, Biophys. Chem. 26 (1987) 123.

    Google Scholar 

  7. W. Fontana, W. Schnabl and P. Schuster, Phys. Rev. A40 (1989) 3301.

    Google Scholar 

  8. M. Eigen, J. McCaskill and P. Schuster, Adv. Chem. Phys. 75 (1989) 149.

    Google Scholar 

  9. M.A. Huynen, P.F. Stadler and W. Fontana, Proc. Natl. Acad. Sci. (USA) 93 (1996) 397.

    Google Scholar 

  10. E.L. Lawler, J.K. Lenstra, A.H.G.R. Kan and D.B. Shmoys,The Traveling Salesman Problem. A Guided Tour of Combinatorial Optimization (Wiley, 1985).

  11. Y. Fu and P.W. Anderson, J. Phys. A: Math. Gen. 19 (1986) 1605.

    Google Scholar 

  12. P.F. Stadler and W. Schnabl, Phys. Lett A161 (1992) 337.

    Google Scholar 

  13. P.F. Stadler and R. Happel, J. Phys. A: Math. Gen. 25 (1992) 3103.

    Google Scholar 

  14. P.F. Stadler, Europhys. Lett. 20 (1992) 479.

    Google Scholar 

  15. W. Fontana, T. Griesmacher, W. Schnabl, P. Stadler and P. Schuster, Monatsh. Chemie 122 (1991) 795.

    Google Scholar 

  16. S. Bonhoeffer, J. McCaskill, P. Stadler and P. Schuster, Europ. Biophys. J. 22 (1993).

  17. W. Fontana, P.F. Stadler, E.G. Bornberg-Bauer, T. Griesmacher, I.L. Hofacker, M. Tacker, P. Tarazona, E.D. Weinberger and P. Schuster, Phys. Rev. E47 (1993) 2083.

    Google Scholar 

  18. W. Fontana, D.A.M. Konings, P.F. Stadler and P. Schuster, Biochemistry 33 (1993) 1389.

    Google Scholar 

  19. I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker and P. Schuster, Monatsh. Chemie 125 (1994) 167.

    Google Scholar 

  20. M. Huynen and P. Hogeweg, J. Mol. Evol. 39 (1994) 71.

    Google Scholar 

  21. P. Schuster, Complex optimization in an artificial RNA world, in:Artificial Life II, Vol. XII of SFI Studies in the Science of Complexity, eds. D. Farmer, C. Langton, S. Rasmussen and C. Taylor (Addison-Wesley, 1992) pp. 277–291.

  22. P. Schuster, W. Fontana, P.F. Stadler and I.L. Hofacker, Proc. Roy. Soc. Lond. B255 (1994) 279.

    Google Scholar 

  23. P. Schuster and P.F. Stadler, Comp. Chem. 18 (1994) 295.

    Google Scholar 

  24. P.F. Stadler and W. Grüner, J. Theor. Biol. 165 (1993) 373.

    Google Scholar 

  25. M. Tacker, W. Fontana, P. Stadler and P. Schuster, Euro. J. Biophys. 23 (1994) 29.

    Google Scholar 

  26. M. Tacker, P.F. Stadler, E.G. Bornberg-Bauer, I.L. Hofacker and P. Schuster, Algorithm independent properties of RNA secondary structure prediction, Euro. Biophys. J., in press; Santa Fe Institut Preprint 96-04-014.

  27. C. Macken, P. Hagan and A. Perelson, SIAM J. Appl. Math. 51 (1991) 799.

    Google Scholar 

  28. H. Flyvbjerg and B. Lautrup, Phys. Rev. A46 (1992) 6714.

    Google Scholar 

  29. P. Bak, H. Flyvbjerg and B. Lautrup, Phys. Rev. A46 (1992) 6724.

    Google Scholar 

  30. S.A. Kauffman and S. Levin, J. Theor. Biol. 128 (1987) 11.

    Google Scholar 

  31. S.A. Kauffman and E.D. Weinberger, J. Theor. Biol. 141 (1989) 211.

    Google Scholar 

  32. E.D. Weinberger, Phys. Rev. A44 (1991) 6399.

    Google Scholar 

  33. B. Derrida, Phys. Rev. Lett. 45 (1980) 79.

    Google Scholar 

  34. B. Derriada, Phys. Rev. B24 (1981) 2613.

    Google Scholar 

  35. C. Amitrano, L. Peliti and M. Saber, J. Mol. Evol. 29 (1989) 513.

    Google Scholar 

  36. E.D. Weinberger and P.F. Stadler, J. Theor. Biol. 163 (1993) 255.

    Google Scholar 

  37. A. Bray and M. Moore, J. Phys. C: Solid St. Phys. 13 (1980) L469.

    Google Scholar 

  38. A. Bray and M. Moore, J. Phys. C: Solid St. Phys. 14 (1981) 1313.

    Google Scholar 

  39. C. De Dominics, M. Gabay, T. Garel and H. Orland, J. Physique 41 (1980) 923.

    Google Scholar 

  40. F. Tanaka and S. Edwards, J. Phys. F: Metal Phys. 10 (1980) 2769.

    Google Scholar 

  41. B. Derrida and E. Gardner, J. Physique 47 (1986) 959.

    Google Scholar 

  42. M. Zuker and D. Sankoff, Bull. Math. Biol 46 (1984) 591.

    Google Scholar 

  43. M. Eigen and P. Schuster,The Hypercycle (Springer, New York, Berlin, 1979).

    Google Scholar 

  44. J. Maynard-Smith, Nature 225 (1970) 563.

    Google Scholar 

  45. P.G. Mezey,Potential Energy Hypersurfaces (Elsevier, Amsterdam, 1987).

    Google Scholar 

  46. D. Heidrich, W. Kliesch and W. Quapp,Properties of Chemically Interesting Potential Energy Surfaces, Vol. 56 of Lecture Notes in Chemistry (Springer, Berlin, 1991).

    Google Scholar 

  47. T. Creighton,Proteins. Structure and Molecular Properties (Freeman, New York, 1992).

    Google Scholar 

  48. K.A. Dill, S. Bromberg, K. Yue, K.M. Fiebig, D.P. Yee, P.D. Thomas and H.S. Chan, Prot. Sci. 4 (1995) 562.

    Google Scholar 

  49. J. Bryngelson, J.N. Onuchic, N.D. Socci and P. Wolynes, Proteins 21 (1995) 167.

    Google Scholar 

  50. D. Heidrich,The Reaction Path in Chemistry: Current Approaches and Perspectives (Kluwer, Dordrecht, 1995).

    Google Scholar 

  51. P.F. Stadler and R. Happel, Random field models for fitness landscapes, J. Math. Biol., in press; Santa Fe Institute Preprint 95-07-069.

  52. E.D. Weinberger, Biol. Cybern. 63 (1990) 325.

    Google Scholar 

  53. F. Spitzer,Principles ofRandom Walks (Springer, New York, 1976).

    Google Scholar 

  54. N.L. Biggs,Algebraic Graph Theory (Cambridge University Press, Cambridge UK, 2nd Ed. 1994).

    Google Scholar 

  55. D. Cvetković, M. Doob and H. Sachs,Spectra of Graphs - Theory and Applications (Academic Press, New York, 1980).

    Google Scholar 

  56. G. Kirchhoff, Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der lineare Verteilung galvanischer Ströme geführt wird, Ann. Phys. Chem. 72 (1847) 487–508.

    Google Scholar 

  57. P.M. Soardi,Potential Theory on Infinite Networks, Vol. 1590 of Lecture Notes in Mathematics (Springer, Berlin, 1994).

    Google Scholar 

  58. L. Grover, Oper. Res. Lett. 12 (1992) 235.

    Google Scholar 

  59. S. Baskaran, P.F. Stadler and P. Schuster, J. Theor. Biol. (1996) in press; Santa Fe Institute Preprint 95-10-083.

  60. P.F. Stadler and B. Krakhofer, Local minima of p-spin models, Rev. Mex. Fis. 42 (1996) 355.

    Google Scholar 

  61. B. Huppert,Endliche Gruppen I (Springer, Berlin, Heidelberg, 1967).

    Google Scholar 

  62. J.-P. Serre,Linear Representations of Finite Groups (Springer, New York, Heidelberg, Berlin, 1977).

    Google Scholar 

  63. L. Lovász, Periodica Math. Hung. 6 (1975) 191.

    Google Scholar 

  64. D. Cvetkovié, M. Doob and H. Sachs,Spectra of Graphs - Theory and Applications (Academic Press, New York, 1980).

    Google Scholar 

  65. D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35 (1975) 1792.

    Google Scholar 

  66. B. Derrida, Phys. Rep. 67 (1980) 29.

    Google Scholar 

  67. E. Gardner and B. Derrida, J. Phys. A22 (1989) 1975.

    Google Scholar 

  68. M. Golay, IEEE Trans. Inform. Th. IT-23 (1977) 43.

  69. J. Bernasconi, J. Physique 48 (1987) 559.

    Google Scholar 

  70. D. Rumschitzky, J. Math. Biol. 24 (1987) 667.

    Google Scholar 

  71. A. Dress and D. Rumschitzki, Acta Appl. Math. 1l (1988) 103.

    Google Scholar 

  72. S. Lin and B. Kernighan, Oper. Res. 21 (1965) 498.

    Google Scholar 

  73. J. Warren, Appl. Math. Comp. 60 (1994) 171.

    Google Scholar 

  74. B. Krakhofer, Local optima in landscapes of combinatorial optimization problems, Master's Thesis, University of Vienna, Dept. of Theoretical Chemistry (1995).

  75. E. Aarts and J. Korst,Simulated Annealingand Boltzman Machines (Wiley, New York, 1990).

    Google Scholar 

  76. R. Otten and L. van Ginneken,The Annealing Algorithm (Kluwer, Boston, 1989).

    Google Scholar 

  77. D. Miller and J.F. Pekny, Science 251 (1991) 754.

    Google Scholar 

  78. B. Mohar, The laplacian spectrum of graphs, in:Graph Theory, Combinatorics, and Applications, eds. Y. Alavi, G. Chartrand, O. Ollermann and A. Schwenk (Wiley, New York, 1991) pp. 871–897.

    Google Scholar 

  79. B. Krakhofer and P.F. Stadler, Local optima in the landscape of the graph bipartitioning problem, Europhys. Lett. 34 (1996) 85.

    Google Scholar 

  80. C.A. Macken and P.F. Stadler, Evolution on fitness landscapes, in:1993 Lectures in Complex Systems, eds. L. Nadel and D.L. Stein, SFI Studies in the Science of Complexity, Vol VI (Addison-Wesley, Reading, MA, 1995).

    Google Scholar 

  81. I. Chavel,Eigenvalues in Riemannian Geometry (Academic Press, Orlando, FL, 1984).

    Google Scholar 

  82. Y. Colin De Verdiere, Rend. Mat. Appl. 13 (1993) 433.

    Google Scholar 

  83. M. Fiedler, Czech. Math. J. 23 (1973) 298.

    Google Scholar 

  84. R. Grone and G. Zimmermann, Lin. Multilin. Algebra 28 (1990) 45.

    Google Scholar 

  85. R. Merris, Lin. Multilin. Algebra 22 (1987) 115.

    Google Scholar 

  86. M. Fiedler, Czech. Math. J. 25 (1975) 619.

    Google Scholar 

  87. S. Kauffman,The Origin of Order (Oxford University Press, New York, Oxford, 1993).

    Google Scholar 

  88. F. Buckley and F. Harary,Distance in Graphs (Addison Wesley, Redwood City, CA, 1990).

    Google Scholar 

  89. D. Higman, Geometriae Dedicata 4 (1975) 1.

    Google Scholar 

  90. D. Higman, Geometriae Dedicata 5 (1976) 413.

    Google Scholar 

  91. D. Higman, Lin. Alg. Appl. 93 (1987) 209.

    Google Scholar 

  92. C.D. Godsil,Algebraic Combinatorics (Chapman & Hall, New York, 1993).

    Google Scholar 

  93. P. Cameron and J. van Lint,Designs, Graphs, Codes, and their Links, Vol. 22 of London Math. Soc. Student Texts (Cambridge University Press, Cambridge UK, 1991).

    Google Scholar 

  94. P. Delsarte, An Algebraic Approach to Association Schemes of Coding Theory, Vol. 10 of Phillips Research Reports Supplements (Phillips, 1973).

  95. R. Bose and D. Mesner, Ann. Math. Statist. 30 (1959) 21.

    Google Scholar 

  96. P.F. Stadler and R. Happel, Canonical approximation of landscapes, Santa Fe Institute Preprint 94-09-51(1994).

  97. A. Brouwer, A. Cohen and A. Neumaier,Distance-Regular Graphs (Springer, Berlin, New York, 1989).

    Google Scholar 

  98. N. Biggs,Finite Groups of Automorphisms, Vol. 6 of London Mathematical Society Lecture Notes (Cambridge University Press, Cambridge UK, 1971).

    Google Scholar 

  99. D. Higman, J. Algebra 6 (1967) 22.

    Google Scholar 

  100. G. Sabidussi, Mh. Math. 68 (1964) 426.

    Google Scholar 

  101. B. Bollobás,Graph Theory-An Introductory Course (Springer, New York, 1979).

    Google Scholar 

  102. A. Schwenk, Computing the characteristic polynomial of a graph, in:Graphs and Combinatorics, Vol. 406 of Lecture Notes in Mathematics, (Springer, Berlin, 1974) pp. 153–162.

    Google Scholar 

  103. D. Powers and M. Sulaiman, Lin. Algebra Appl. 48 (1982) 145.

    Google Scholar 

  104. D. Powers, SIAM J. Matrix Anal. Appl. 9 (1988) 399.

    Google Scholar 

  105. P.F. Stadler, J. Physique 4 (1994) 681.

    Google Scholar 

  106. P.F. Stadler, Disc. Math. 145 (1995) 229.

    Google Scholar 

  107. P.F. Stadler, Towards a theory of landscapes, in:Complex Systems and Binary Networks, eds. R. López Peña, R. Capovilla, R. Garcia-Pelayo, H. Waelbroeck and F. Zertuche, Vol. 461 of Lecture Notes in Physics (Springer, New York, 1995).

    Google Scholar 

  108. N. Sloane, An introduction to association schemes and coding theory, in:Theory and Applications of Special Functions, ed. R.A. Askey (Academic Press, New York, San Francisco, London, 1975) pp. 225–260.

    Google Scholar 

  109. S. Roman,Coding and Information Theory (Springer, New York, Heidelberg, 1992).

    Google Scholar 

  110. J. van Lint,Introduction to Coding Theory (Springer, New York, 1982).

    Google Scholar 

  111. R. Happel and P. F. Stadler, Canonical approximation of landscapes, Complexity (1996), in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadler, P.F. Landscapes and their correlation functions. J Math Chem 20, 1–45 (1996). https://doi.org/10.1007/BF01165154

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01165154

Keywords

Navigation