Skip to main content

Advertisement

Log in

Analytic models for the patchy spread of plant disease

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Plant epidemiologists have long been concerned with the patchy nature of plant disease epidemics. This paper presents a new analytical model for patchy plant epidemics (and patchy dynamics in general), using a second-order approximation to capture the spatial dynamics in terms of the densities and spatial covariances of healthy and infected hosts. Using these spatial moment equations helps us to explain the dynamic growth of patchiness during the early phase of the epidemic, and how the patchiness feeds back on the growth rate of the epidemic. Both underlying heterogeneity in the host spatial arrangement and dynamically generated heterogeneity in the spatial arrangement of infected plants initially accelerate but later decelerate the epidemic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Assefa, H., F. van den Bosch and J. C. Zadoks (1995). Focus expansion of bean rust in cultivar mixtures. Plant Pathol. 44, 503–509.

    Google Scholar 

  • Aylor, D. E. (1982). Modelling spore dispersal in a barley crop. Agr. Meteorol. 26, 215–219.

    Article  Google Scholar 

  • Aylor, D. E. and F. J. Ferrandino (1989). Temporal and spatial development of bean rust epidemics initiated from an inoculated line source. Phytopathology 79, 146–151.

    Google Scholar 

  • Bartlett, M. (1957). Measles periodicity and community size. J. R. Stat. Soc. Ser. A 120, 48–70.

    Google Scholar 

  • Bolker, B. M. and S. W. Pacala (1997). Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor. Pop. Biol. 52, 179–197.

    Article  MATH  Google Scholar 

  • Bolker, B. M. and S. W. Pacala (1999). Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal. Am. Naturalist 153, 575–602.

    Article  Google Scholar 

  • Burdon, J. J. and G. A. Chilvers (1976). The effect of clumped planting patterns on epidemics of damping-off disease in cress seedlings. Oecologia 23, 17–29.

    Google Scholar 

  • Campbell, C. L. and L. V. Madden (1990). Introduction to Plant Disease Epidemiology, New York: Wiley.

    Google Scholar 

  • Cox, J. T. and R. Durrett (1988). Limit theorems for the spread of epidemics and forest fires. Stoch. Process. Appl. 30, 171–191.

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie, N. A. C. (1991). Statistics for Spatial Data, New York: Wiley.

    MATH  Google Scholar 

  • Diggle, P. (1983). Statistical Analysis of Spatial Point Patterns, New York: Academic Press.

    MATH  Google Scholar 

  • Durrett, R. and C. Neuhauser (1991). Epidemics with recovery in D = 2. Ann. Appl. Probability 1, 189–206.

    MathSciNet  MATH  Google Scholar 

  • Dushoff, J. (1998). Host heterogeneity and disease endemicity: a moment-based approach, unpublished manuscript.

  • Ellner, S. P., A. Sasaki, Y. Haraguchi and H. Matsuda (1998). Speed of invasion in lattice population models: pair-edge approximation. J. Math. Biol. 36, 469–484.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferrandino, F. J. (1993). Dispersive epidemic waves. 1: focus expansion within a linear planting. Phytopathology 83, 795–802.

    Google Scholar 

  • Fitt, B. D. L. and H. A. McCartney (1986). Spore dispersal in relation to epidemic models, in Plant Disease Epidemiology, Population Dynamics and Managements, Vol. 1, K. J. Leonard and W. E. Fry (Eds), New York: Macmillan, Chap. 13, pp. 311–345.

    Google Scholar 

  • Fleming, R. A., L. M. Marsh and H. C. Tuckwell (1982). Effect of field geometry on the spread of crop disease. Protection Ecol. 4, 81–108.

    Google Scholar 

  • Gressel, J., L. Segel and J. K. Ransom (1996). Managing the delay of evolution herbicide resistance in parasitic weeds. Int. J. Pest Manage. 42, 113–129.

    Article  Google Scholar 

  • Ihaka, R. and R. Gentleman (1996). R: a language for data analysis and graphics. J. Comput. Graphical Stat. 5, 299–314.

    Article  Google Scholar 

  • Jeger, M. J. (Ed.) (1989). Spatial Components of Plant Disease Epidemics, Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Keeling, M. J., D. A. Rand and A. J. Morris (1997). Correlation models for childhood epidemics. Proc. R. Soc. Lond. Ser. B 264, 1149–1156.

    Article  Google Scholar 

  • Kubo, T., Y. Iwasa and N. Furumoto (1996). Forest spatial dynamics with gap expansion: total gap area and gap size distribution. J. Theor. Biol. 180, 18.

    Article  Google Scholar 

  • Legg, B. J. and F. A. Powell (1979). Spore dispersal in a barley crop: a mathematical model. Agr. Meteorol. 20, 47–67.

    Article  Google Scholar 

  • Madden, L. V. (1989). Dynamic nature of within-field disease and pathogen distributions, in Jeger, Englewood Cliffs, NJ: Prentice Hall, Chap. 5, pp. 96–126

    Google Scholar 

  • May, R. M. and R. M. Anderson (1989). The transmission dynamics of human immunodeficiency virus (HIV), in Applied Mathematical Ecology, S. A. Levin, T. G. Hallam and L. J. Gross (Eds), Berlin: Springer-Verlag, pp. 265–311.

    Google Scholar 

  • McCartney, H. A. and B. D. L. Fitt (1985). Construction of dispersal models, in Mathematical Modelling of Crop Disease, no. 3 in Advances in Plant Pathology, C. A. Gilligan (Ed.), New York: Academic Press, pp. 107–143.

    Google Scholar 

  • McCartney, H. A. and B. D. L. Fitt (1987). Spore dispersal gradients and disease development, in Populations of Plant Pathogens: their Dynamics and Genetics, M. S. Wolfe and C. E. Caten (Eds), Oxford: Blackwell Scientific, Chap. 9, pp. 109–118.

    Google Scholar 

  • McElhany, J. P., L. A. Real and A. G. Power (1995). Disease spread, spatial dynamics, and vector preference for diseased hosts: a study of barley yellow dwarf virus. Ecology 76, 444–457.

    Article  Google Scholar 

  • Metz, J. A. J. and F. van den Bosch (1994). Velocities of epidemic spread, in Epidemic Models: their Structure and Relation to Data, D. Mollison (Ed.), Cambridge: Cambridge University Press.

    Google Scholar 

  • Milgroom, M. and W. Fry (1988). A simulation analysis of the epidemiological principles for fungicide resistance management in pathogen populations. Phytopathology 78, 565–570.

    Google Scholar 

  • Minogue, K. P. (1989). Diffusion and spatial probability models for disease spread, in Jeger, Englewood Cliffs, NJ: Prentice Hall, Chap. 6, pp. 127–143.

    Google Scholar 

  • Minogue, K. P. and W. E. Fry (1983a). Models for the spread of disease: model description. Phytopathology 73, 1168–1173.

    Article  Google Scholar 

  • Minogue, K. P. and W. E. Fry (1983b). Models for the spread of plant disease: some experimental results. Phytopathology 73, 1173–1176.

    Google Scholar 

  • Mundt, C. C. and K. J. Leonard (1985). Effect of host genotype unit area on epidemic development of crown rust following focal and general inoculations of mixtures of immune and susceptible oat plants. Phytopathology 75, 1141–1145.

    Google Scholar 

  • Mundt, C. C. and K. J. Leonard (1986). Analysis of factors affecting disease increase and spread in mixtures of immune and susceptible plants in computer-simulated epidemics. Phytopathology 76, 832–840.

    Google Scholar 

  • Mundt, C. C., K. J. Leonard, W. M. Thal and J. H. Fulton (1986). Computerized simulation of crown rust epidemics in mixtures of immune and susceptible oat plants with different genotype unit areas and spatial distributions of initial disease. Phytopathology 76, 590–598.

    Google Scholar 

  • Murray, J. (1990). Biomathematics, Mathematical Biology, Vol. 19, 2nd edn, New York: Springer-Verlag.

    Google Scholar 

  • Pacala, S. and S. Levin (1998). Biologically generated spatial pattern and the coexistence of competing species, in Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions, D. Tilman and P. Kareiva (Eds), Princeton, NJ: Princeton University Press, Chap. 9, pp. 204–232.

    Google Scholar 

  • Pielou, E. (1977). Mathematical Ecology, 2nd edn, New York: Wiley.

    Google Scholar 

  • Rand, D. A. (to appear). Correlation equations and pair approximations for spatial ecologies, in Theoretical Ecology: Advances in Principles and Applications, J. McGlade (Ed.), Oxford: Blackwell.

  • Satō, K., H. Matsuda and A. Sasaki (1994). Pathogen invasion and host extinction in lattice structured populations. J. Math. Biol. 32, 251–268.

    Article  MATH  Google Scholar 

  • Shaw, M. W. (1994). Modeling stochastic processing in plant pathology. Ann. Rev. Phytopathol. 32, 523–544.

    Article  Google Scholar 

  • Skellam, J. G. (1951). Random dispersal in theoretical populations. Biometrika 38, 196–218. Reprinted (1991)in Foundations of Ecology: Classic Papers with Commentaries, Leslie A. Real and H. James Brown (Eds), Chicago: University of Chicago Press.

    Google Scholar 

  • Swinton, J. and R. Anderson (1995). Model frameworks for plant-pathogen interactions, in Ecology of Infectious Diseases in Natural Populations, B. Grenfell and A. Dobson (Eds), Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Swinton, J., J. Harwood, B. T. Grenfell and C. A. Gilligan (1998). Persistence thresholds for phocine distemper virus infection in harbour seal (Phoca vitulina) metapopulations. J. Anim. Ecol. 67, 15.

    Article  Google Scholar 

  • van den Bosch, F., H. D. Frinking, J. A. J. Metz and J. C. Zadoks (1988a). Focus expansion in plant disease. III. Two experimental examples. Phytopathology 78, 919–925.

    Google Scholar 

  • van den Bosch, F., J. A. J. Metz and O. Diekmann (1990). The velocity of spatial population expansion. J. Math. Biol. 28, 529–565.

    Article  MathSciNet  MATH  Google Scholar 

  • van den Bosch, F., J. C. Zadoks and J. A. J. Metz (1988b). Focus expansion in plant disease. II. Realistic parameter-sparse models. Phytopathology 78, 59–64.

    Google Scholar 

  • van den Bosch, F., J. C. Zadoks and J. A. J. Metz (1988c). Focus expansion in plant disease. I. The constant rate of focus expansion. Phytopathology 78, 54–58.

    Google Scholar 

  • Zadoks, J. C. (1988). 25 years of botanical epidemiology. Phil. Trans. R. Soc. Lond. Ser. B 321, 377–387.

    Google Scholar 

  • Zadoks, J. C. and F. van den Bosch (1994). On the spread of plant disease: a theory on foci. Ann. Rev. Phytopathol. 32, 503–521.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolker, B.M. Analytic models for the patchy spread of plant disease. Bull. Math. Biol. 61, 849–874 (1999). https://doi.org/10.1006/bulm.1999.0115

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0115

Keywords

Navigation