Skip to main content

A Method for Simulation of Grain Coarsening Due to Diffusion in Capillary Liquid Bridge

  • Conference paper
  • First Online:
Proceedings of the III Advanced Ceramics and Applications Conference

Abstract

The finite element method is employed to determine the morphological evolution of grain coarsening in capillary liquid bridge. Multi grain model represented by two dimensional contours defined as discrete set of points was used. Numerical method for simulation of grain coarsening was based on the interfacial concentrations as given by the Gibbs-Thomson equation and on modeling of intergrain difusional interactions. It is shown that the strong intergrain diffusional interactions can induce large shape distortion of the contours and significant migration of the center of mass of the contours. Using different arrangement of contours joined by capillary liquid bridge it was shown that this migration very much depends on the spatial distribution of contours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 229.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Fischmeister, G. Grimvall, Ostwald ripening—a survey. Sinter. Relat. Phenom. Mater. Sci. Res. 6, 119–149 (1973)

    Article  Google Scholar 

  2. N.C. Kothari, Densification and grain growth during liquid-phase sintering of tungsten-nickel-copper alloys. J. Less-Common Metals 13, 457–468 (1967)

    Article  Google Scholar 

  3. T.K. Kang, D.N. Yoon, Coarsening of tungsten grains in liquid nickel-tungsten matrix. Metall. Trans. A 9A, 433–438 (1978)

    Article  Google Scholar 

  4. R. Warren, M.B. Waldron, Microstructural development during the liquid-phase sintering of cemented carbides. II. Carbide grain growth. Powder Metall. 15, 180–201 (1972)

    Article  Google Scholar 

  5. W.J. Huppmann, G. Petzow, The role of grain and phase boundaries in liquid phase sintering. Ber. Bunsenges. Phys. Chem. 82, 308–312 (1978)

    Article  Google Scholar 

  6. D.N. Yoon, W.J. Huppmann, Pract. Metall. 15, 399–401 (1978)

    Google Scholar 

  7. D.N. Yoon, W.J. Huppmann, Chemically driven growth of tungsten grains during sintering in liquid nickel. Acta Metall. 27, 973–977 (1979)

    Article  Google Scholar 

  8. P.S. Sahni, D.J. Srolovitz, G.S. Grest, M.P. Anderson, S.A. Safran, Kinetics of ordering in two dimensions. II. Quenched systems. Phys. Rev. B 28, 2705 (1983)

    Article  Google Scholar 

  9. M.P. Anderson, D.J. Srolovitz, G.S. Grest, P.S. Sahni, Computer simulation of grain growth-I. Kinetics. Acta Metall. 32(5), 783–791 (1984)

    Article  Google Scholar 

  10. G.S. Grest, M.P. Anderson, D.J. Srolovitz, Domain-growth kinetics for the Q-state Potts model in two and three dimensions. Phys. Rev. B 38, 4752 (1988)

    Article  Google Scholar 

  11. A.D. Rollett, D.J. Srolovitz, M.P. Anderson, Simulation and theory of abnormal grain growth—anisotropic grain boundary energies and mobilities. Acta Metall. 37, 1227–1240 (1989)

    Article  Google Scholar 

  12. M. Anderson, G.S. Grest, D.J. Srolovitz, Computer simulation of normal grain growth in three dimensions. Philos. Mag. B 59(3), 293–329 (1989)

    Article  Google Scholar 

  13. G.N. Hassold, E.A. Holm, A fast serial algorithm for the finite temperature quenched Potts model. Comput. Phys. 7, 97–107 (1993)

    Article  Google Scholar 

  14. B. Radhakrishnan, T. Zacharia, Simulation of curvature-driven grain growth by using a modified Monte Carlo algorithm. Metall. Mater. Trans. 26A, 167–180 (1995)

    Article  Google Scholar 

  15. K. Mehnert, P. Klimanek, Grain growth in metals with strong textures: three-dimensional Monte Carlo simulations. Comput. Mater. Sci. 9, 261–266 (1997)

    Article  Google Scholar 

  16. Yoshiyuki Saito, Monte carlo simulation of grain growth in three-dimensions. ISIJ Int. 38, 559–566 (1998)

    Article  Google Scholar 

  17. E.A. Holm, G.N. Hassold, M.A. Miodnik, On misorientation distribution evolution during anistropic grain growth. Acta Mater. 49, 2981–2991 (2001)

    Article  Google Scholar 

  18. O.M. Ivasishin, S.V. Shevchenko, N.L. Vasiliev, S.L. Semiatin, 3D Monte-Carlo simulation of texture-controlled grain growth. Acta Mater. 51, 1019–1034 (2003)

    Article  Google Scholar 

  19. D.K. Lee, K.J. Ko, B.J. Lee, N.M. Hwan, Monte Carlo simulations of abnormal grain growth by sub-boundary-enhanced solid-state wetting. Scripta Mater. 58, 683–686 (2008)

    Article  Google Scholar 

  20. H.L. Ding, Y.Z. He, J.F. Liu, W.J. Ding, Cellular automata simulation of grain growth in three dimensions based on the lowest-energy principle. J. Cryst. Growth 293, 489–497 (2006)

    Article  Google Scholar 

  21. Yizhu He, Hanlin Ding, Liufa Liu, Keesam Shin, Computer simulation of 2D grain growth using a cellular atuomata model based on the lowest energy principle. Mater. Sci. Eng. A 429(1/2), 236–246 (2006)

    Article  Google Scholar 

  22. Y.J. Lan, D.Z. Li, Y.Y. Li, A mesoscale cellular automaton model for curvature-driven grain growth. Metall. Mater. Trans. B 37, 119–129 (2006)

    Article  Google Scholar 

  23. S. Raghavan, Satyam S. Sahay, Modeling the grain growth kinetics by cellular automaton. Mater. Sci. Eng. A 445–446, 203–209 (2007)

    Article  Google Scholar 

  24. D. Weygand, Y. Brechet, J. Lepinoux, Reduced mobility of triple nodes and lines on grain growth in two and three dimensions. Interface Sci. 7, 285 (1999)

    Article  Google Scholar 

  25. G. Gottstein, Y. Ma, L.S. Shvindlerman, Triple junction motion and grain microstructure evolution. Acta Mater. 53, 1535–1544 (2005)

    Article  Google Scholar 

  26. L.A. Barrales Mora, 2D vertex modeling for the simulation of grain growth and related phenomena. Math. Comput. Simul. 80, 1411–1427 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Merriman, J.K. Bence, S.J. Osher, Motion of multiple functions: a level set approach. J. Comput. Phys. 112, 334–363 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Y. Suwa, Y. Saito, H. Onodera, Three-dimensional phase field simulation of the effect of anisotropy in grain-boundary mobility on growth kinetics and morphology of grain structure. Comput. Mater. Sci. 40, 40–50 (2007)

    Article  Google Scholar 

  29. K.-J. Ko, P.-R. Cha, D. Srolovitz, N.-M. Hwang, Abnormal grain growth induced by sub-boundary-enhanced solid-state wetting: analysis by phase-field model simulations. Acta Mater. 57, 838–845 (2009)

    Article  Google Scholar 

  30. P.W. Voorhees, M.E. Glicksman, Solution to the multi-particle diffusion problem with applications to Ostwald ripening—I. Theory. Acta Metall. 32, 2001–2011 (1984)

    Article  Google Scholar 

  31. P.W. Voorhees, G.B. McFadden, R.F. Boisvert, D.I. Meiron, Numerical simulation of morphological development during ostwald ripening. Acta Metall. 36, 207–222 (1988)

    Article  Google Scholar 

  32. Z.S. Nikolic, Computer simulation of grain growth by grain boundary migration during liquid phase sintering. J. Mater. Sci. 34(4), 783–794 (1999)

    Article  Google Scholar 

  33. Z.S. Nikolic, R.M. Spriggs, M.M. Ristic, A new computer model of ostwald ripening, in Sintering Technology, ed. by R.M. German, G.L. Messing, R.G. Cornwall (Marcel Dekker, Inc., New York, 1996), pp. 423–430

    Google Scholar 

  34. W.A. Kaysser, M. Zivkovic, G. Petzow, Shape accommodation during grain growth in the presence of a liquid phase. J. Mater. Sci. 20, 578–584 (1985)

    Article  Google Scholar 

  35. V. Tikare, J.D. Cawley, Numerical simulation of grain growth in liquid phase sintered materials—I. Model. Acta Mater. 46(4), 1333–1342 (1998)

    Article  Google Scholar 

  36. V. Tikare, J.D. Cawley, Numerical simulation of grain growth in liquid phase sintered materials—II. Study of isotropic grain growth. Acta Mater. 46(4), 1343–1356 (1998)

    Article  Google Scholar 

  37. S.-B. Lee, J.M. Rickman, A.D. Rollett, Three-dimensional simulation of isotropic coarsening in liquid phase sintering I: a model. Acta Mater. 55, 615–626 (2007)

    Article  Google Scholar 

  38. F.S. Lameiras, Simulation of particle coarsening with iteration function systems. Simul. Pract. Theory 7(7), 719–728 (2000)

    Article  Google Scholar 

  39. L.M. Lifshitz, V.V. Slyozov, Soviet Phys. J. Exp. Theor. Phys. 35, 479 (1958)

    Google Scholar 

  40. C. Wagner, Theorie Der Alterung Von Niederschlagen Durch Umlosen (Ostwald-Reifung). Z. Elektrochem. 65, 581–591 (1961)

    Google Scholar 

  41. K. Shinagawa, K. Osakada, K. Mori, Microscopic modelling of non-uniform shrinkage in sintering by FEM, in Computer Aided Innovation of New Materials II, ed. by M. Doyama, J. Kihara, M. Tanaka, R. Yamamoto (Amsterdam, North-Holland, 1993), pp. 1747–1750

    Google Scholar 

  42. K. Shinagawa, Finite element simulation of sintering process (Microscopic modelling of powder compacts and constitutive equation for sintering). JSME Int. J. Ser. A 39(4), 565–572 (1996)

    Google Scholar 

  43. Z.S. Nikolic, K. Shinagawa, A model for computer study of grain coarsening in liquid phase sintering, in 11th International Conference on Fundamental and Applied Aspects of Physical ChemistryPhysical Chemistry, Belgrade, Serbia, vol. 1 (2012), pp. 483–485

    Google Scholar 

  44. K. Shinagawa, Z.S. Nikolic finite element analysis of diffusion and deformation in liquid bridge between powder particles, in Abstract Book (DVD) of 25th Fall Meeting of the Ceramic Society of Japan, Nagoya University (Higashiyama Campus), Japan (2012)

    Google Scholar 

  45. B. Randjelovic, K. Shinagawa, Z.S. Nikolic, A mathematical approach to ostwald ripening due to diffusion and deformation in liquid bridge. Sci. Sinter. 45, 261–271 (2013)

    Article  Google Scholar 

  46. M.E.D. Urso, C.J. Lawrence, M.J. Adams, Funicular, and capillary bridges: results for two dimensions. J. Colloid Interface Sci. 220, 42–56 (1999)

    Article  Google Scholar 

  47. T.M. Shaw, Model for the effect of powder packing on the driving force for liquid-phase sintering. J. Am. Ceram. Soc. 76(3), 664–670 (1993)

    Article  Google Scholar 

  48. T.M. Shaw, Liquid redistribution during liquid-phase sintering. J. Am. Ceram. Soc. 69(1), 27–34 (1986)

    Article  Google Scholar 

  49. H.-H. Park, S.-J. Cho, D.N. Yoon, Pore filling process in liquid phase sintering. Metall. Trans. A 15A, 1075–1080 (1984)

    Article  Google Scholar 

  50. H.-H. Park, O.-J. Kwon, D.N. Yoon, The critical grain size for liquid flow into pores during liquid phase sintering. Metall. Trans. A 17A, 1915–1919 (1986)

    Article  Google Scholar 

  51. Hyo-Hoon Park, D.N. Yoon, Effect of dihedral angle on the morphology of grains in a matrix phase. Metall. Trans. A 16A, 923–928 (1985)

    Article  Google Scholar 

  52. Z. Grof, C.J. Lawrence, F. Štepánek, Computer simulation of evolving capillary bridges in granular media. Granul. Matter 10, 93–103 (2008)

    Article  MATH  Google Scholar 

  53. Z. Grof, C.J. Lawrence, F. Štepánek, The strength of liquid bridges in random granular materials. J. Colloid Interface Sci. 319, 182–192 (2008)

    Article  Google Scholar 

  54. Z.S. Nikolic, G. Tomandl, Computer study of capillary forces and rearrangement during initial stage of liquid phase sintering, in Materials Processing for Properties and Performance (MP3) vol. 2, ed. by K.A. Khor, Y. Watanabe, K. Komeya, H. Kimura (Institute of Materials East Asia, 2004), pp. 201–211

    Google Scholar 

  55. L.F. Cugliandolo, Statistical mechanics and its applications. Phys. A 389, 4360–4373 (2010)

    Article  Google Scholar 

  56. J. Svoboda, H. Riedel, R. Gaebel, A model for liquid phase sintering. Acta Mater. 44(8), 3215–3226 (1996)

    Article  Google Scholar 

  57. G.W. Greenwood, The growth of dispersed precipitates in solutions. Acta Metall. 4, 243–248 (1956)

    Article  Google Scholar 

  58. W. Ostwald, Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper. Z. Phys. Chem. 34, 495–503 (1900)

    Google Scholar 

  59. G.A. Hulett, Beziehungen zwischen Oberflachenspannung und Loslichkeit. Z. Phys. Chem. 37, 385–406 (1901)

    Article  Google Scholar 

  60. A. Baldan, Progress in Ostwald ripening theories and their applications to nickel-base superalloys. Part I: Ostwald ripening theories. J. Mater. Sci. 37, 2171–2202 (2002)

    Article  Google Scholar 

  61. A. Pimpinelli, J. Villain, Physics of Crystal Growth (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  62. J. Crank, The Mathematics of Diffusion (Oxford University Press, London, 1956)

    MATH  Google Scholar 

  63. R.W. Heckel, The growth and shrinkage rate of second-phase particles of various size distribution. Trans. AIME 233, 1994–2000 (1965)

    Google Scholar 

  64. W.J. Muster, D.N. Yoon, W.J. Huppmann, Solubility and volume diffusion of nickel in tungsten at 1640 C. J. Less-Common Metals. 65, 211–216 (1979)

    Article  Google Scholar 

  65. L. Kozma, W.J. Huppmann, L. Bartha, P. Mezei, Initiation of directional grain growth during liquid-phase sintering of tungsten and nickel. Powder Metall. 24, 7–11 (1981)

    Article  Google Scholar 

  66. R. Kampmann, R. Wagner, Homogeneous Second Phase Precipitation, in R.W. Cahn, P. Haasen, E.J. Kramer. Materials Science and Technology: A Comprehensive Treatment, vol. 5. Phase Transformations in Materials, 1st edn. (Weinheim, Wiley–VCH Verlag, 1991)

    Google Scholar 

  67. A. Luque, J. Aldazabal, J.M. Martínez-Esnaola, A. Martín-Meizoso, J. Gil Sevillano, R.S. Farr, Diffusional Monte Carlo model of liquid-phase sintering. Math. Comput. Simul. 81, 2564–2580 (2011)

    Google Scholar 

  68. O.C. Zienkiewicz, The Finite Element Method, 3rd edn. (McGraw-Hill Book Co., New York, 1983)

    MATH  Google Scholar 

  69. T.O. Saetre, N. Ryum, Dynamic simulation of grain boundary migration. J. Sci. Comput. 3, 189–199 (1988)

    Article  Google Scholar 

  70. A.C.F. Cocks, S.P. Gill, A variational approach to two dimensional grain growth—I. Theory. Acta Mater. 44(12), 4765–4775 (1996)

    Article  Google Scholar 

  71. Z.S. Nikolic, Modeling and simulation of diffusion phenomena during liquid phase sintering. Sci. Sinter. 28(Special Issue), 55–61 (1996)

    Google Scholar 

  72. Y. Ono, T. Shigematsu, J. Jpn Inst. Metals. 41, 62 (1977)

    Google Scholar 

  73. S.S. Kang, D.N. Yoon, Kinetics of grain coarsening during sintering of Co-Cu and Fe-Cu alloys with low liquid contents. Metall. Trans. A 13A, 1405–1411 (1982)

    Article  Google Scholar 

  74. S.J.L. Kang, W.A. Kaysser, G. Petzow, D.N. Yoon, elimination of pores during liquid phase sintering of Mo-Ni. Powder Metall. 27(2), 97–100 (1984)

    Article  Google Scholar 

  75. M.-K. Kang, D.-Y. Kim, N.M. Hwang, Ostwald ripening kinetics of angular grains dispersed in a liquid phase by two-dimensional nucleation and abnormal grain growth. J. Eur. Ceram. Soc. 22, 603–612 (2002)

    Article  Google Scholar 

  76. W.J. Huppmann, G. Petzow, The elementary mechanisms of liquid phase sintering, in Materials Science Research, vol. 13, ed. by G.C. Kuczynski (Plenum Press, New York, 1980), pp. 189–201

    Google Scholar 

  77. G. Petzow, W.A. Kaysser, Basic Mechanisms of Liquid Phase Sintering, ed. by G.S. Upadhyaya. Sintered Metal-Ceramic Composites (Elsevier Science Publishers, Amsterdam, 1984), pp. 51–70

    Google Scholar 

  78. R.M. German, Liquid Phase Sintering (Plenum Press, New York, 1985)

    Book  Google Scholar 

  79. G. Petzow, W.A. Kaysser, Sintering with additives. J. Jpn. Soc. Powder Powder Metall. 34(5), 235–247 (1987)

    Google Scholar 

  80. Z.S. Nikolic, F. Wakai, Three-dimensional computer study of rearrangement during liquid phase sintering. Math. Comput. Model. 55, 1251–1262 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

First author was performed present study under the project No. OI172057 supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia. He would also like to acknowledge partial support for this study by the Japan Society for the Promotion of Science (Invitation Fellowship ID No. S-10175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran S. Nikolic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Atlantis Press and the author(s)

About this paper

Cite this paper

Nikolic, Z.S., Shinagawa, K., Randjelovic, B. (2016). A Method for Simulation of Grain Coarsening Due to Diffusion in Capillary Liquid Bridge. In: Lee, W., Gadow, R., Mitic, V., Obradovic, N. (eds) Proceedings of the III Advanced Ceramics and Applications Conference. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-157-4_7

Download citation

  • DOI: https://doi.org/10.2991/978-94-6239-157-4_7

  • Published:

  • Publisher Name: Atlantis Press, Paris

  • Print ISBN: 978-94-6239-156-7

  • Online ISBN: 978-94-6239-157-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics