Skip to main content

Adaptive Neuro-Fuzzy Optimization of Wind Farm Project Investment Under Wake Effect

  • Conference paper
  • First Online:
Proceedings of the III Advanced Ceramics and Applications Conference

Abstract

The engineering planning of a wind farm generally includes critical decision-making, regarding the layout of the turbines in the wind farm, the number of wind turbines to be installed and the types of wind turbines to be installed. Two primary objectives of optimal wind farm planning are to minimize the cost of energy and to maximize the net energy production or to maximize wind farm efficiency. The optimal wind turbine placement on a wind farm could be modified by taking economic aspects into account. The net present value (NPV) and internal rate of return (IRR) are two of the most important criteria for project investment estimating. To assess the investment risk of wind power project, this paper constructed a process which initially simulated maximal NPV with adaptive neuro-fuzzy (ANFIS) method and then evaluated the IRR based on it. Afterwards, ANFIS simulated maximal IRR and then evaluated the NPV based on it. ANFIS shows very good learning and prediction capabilities, which makes it an efficient tool to deal with encountered uncertainties in any system. The aim of this paper is to develop a model to determine economically optimal layouts for wind farms which include the aerodynamic interactions between the turbines, the various cost factors and wind regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 229.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Yang, P. Sarkar, H. Hu, An experimental investigation on the wake characteristics of a wind turbine in an atmospheric boundary layer wind, 29th AIAA Applied Aerodynamics Conference 27–30 June 2011, Honolulu, Hawaii, 1-18

    Google Scholar 

  2. I. Grant, M. Mo, X. Pan, P. Parkin, J. Powell, H. Reinecke, K. Shuang, F. Coton, D. Lee, An experimental and numerical study of the vortex laments in the wake of an operational, horizontal-axis, wind turbine. J. Wind Eng. Ind. Aerodyn. 85, 177–189 (2000)

    Article  Google Scholar 

  3. F. González-Longatt, P. Wall, V. Terzija, Wake effect in wind farm performance: steady-state and dynamic behavior. Renew. Energy 39, 329–338 (2012)

    Article  Google Scholar 

  4. K. Thomsen, P. Sørensen, Fatigue loads for wind turbines operating in wakes. J. Wind Eng. Ind. Aerodyn. 80, 121–136 (1999)

    Article  Google Scholar 

  5. M. Wagner, J. Day, F. Neumann, A fast and effective local search algorithm for optimizing the placement of wind turbines. Renew. Energy 51, 64–70 (2013)

    Article  Google Scholar 

  6. S. Pookpunt, W. Ongsakul, Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients. Renew. Energy 55, 266–276 (2013)

    Article  Google Scholar 

  7. C.M. Ituarte-Villarreal, J.F. Espiritu, Optimization of wind turbine placement using a viral based optimization algorithm. Procedia Comput. Sci. 6, 469–474 (2011)

    Article  Google Scholar 

  8. Y. Eroglu, S.U. Seçkiner, Wind farm layout optimization using particle filtering approach. Renew. Energy 58, 95–107 (2013)

    Article  Google Scholar 

  9. M.d.P. Gil, O.G.-Bellmunt, A. Sumper, J. B.-Jané, Power generation efficiency analysis of offshore wind farms connected to a SLPC (single large power converter) operated with variable frequenciesconsidering wake effects. Energy 37, 455–468 (2012)

    Article  Google Scholar 

  10. J.-O. Mo, A. Choudhry, M. Arjomandi, R. Kelso, Y.-H. Lee, Effects of wind speed changes on wake instability of a wind turbine in a virtual wind tunnel using large eddy simulation. J. Wind Eng. Ind. Aerodyn. 117, 38–56 (2013)

    Article  Google Scholar 

  11. J. Bartl, F. Pierella, L. Sætran, Wake measurements behind an array of two model wind turbines. Energy Procedia 24, 305–312 (2012)

    Article  Google Scholar 

  12. M.S. Adaramola, P.-Å. Krogstad, Experimental investigation of wake effects on wind turbine performance. Renew. Energy 36, 2078–2086 (2011)

    Article  Google Scholar 

  13. T.T. Lin, Applying the maximum NPV rule with discounted/growth factors to a flexible production scale model. Eur. J. Oper. Res. 196, 628–634 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. D.A. Mellichamp, New discounted cash flow method: estimating plant profitability at the conceptual design level while compensating for business risk/uncertainty. Comput. Chem. Eng. 48, 251–263 (2013)

    Article  Google Scholar 

  15. A. Keswani, M.B. Shackleton, How real option disinvestment flexibility augments project NPVHow real option disinvestment flexibility augments project NPV. Eur. J. Oper. Res. 168, 240–252 (2006)

    Article  MATH  Google Scholar 

  16. M.A. Law, Using net present value as a decision-making tool. Air Med. J. 23(6), 28–33 (2004)

    Article  Google Scholar 

  17. T.M. Schmit, J. Luo, L.W. Tauer, Ethanol plant investment using net present value and real options analyses. Biomass Bioenergy 33, 1442–1451 (2009)

    Article  Google Scholar 

  18. J.R. Cuthbert, M. Cuthbert, Why IRR is an inadequate indicator of costs and returns in relation to PFI schemes. Crit. Perspect. Account. 23, 420–433 (2012)

    Article  Google Scholar 

  19. D.L. Talavera, G. Nofuentes, J. Aguilera, M. Fuentes, Tables for the estimation of the internal rate of return of photovoltaic grid-connected systems. Renew. Sustain. Energy Rev. 11, 447–466 (2007)

    Article  Google Scholar 

  20. L. Pichl, T. Kaizoji, T. Yamano, Stylized facts in internal rates of return on stock index and its derivative transactions. Phys. A 382, 219–227 (2007)

    Article  Google Scholar 

  21. D.O. Brown, F.A. Kwansa, Using IRR and NPV models to evaluate societal costs of tourism projects in developing countries. Hosp. Manag. 18, 31–43 (1999)

    Article  Google Scholar 

  22. J. Pasqual, E. Padilla, E. Jadotte, Technical note: equivalence of different profitability criteria with the net present value. Int. J. Prod. Econ. 142, 205–210 (2013)

    Article  Google Scholar 

  23. C.-B. Li, G.-S. Lu, S. Wu, The investment risk analysis of wind power project in China. Renew. Energy 50, 481–487 (2013)

    Article  Google Scholar 

  24. D. Vuccina, Z. Lozina, F. Vlak, NPV-based decision support in multi-objective design using evolutionary algorithms. Eng. Appl. Artif. Intell. 23, 48–60 (2010)

    Article  Google Scholar 

  25. M.J. Osborne, A resolution to the NPV–IRR debate? Q. Rev. Econ. Finance 50, 234–239 (2010)

    Article  Google Scholar 

  26. D.L. Talavera, G. Nofuentes, J. Aguilera, The internal rate of return of photovoltaic grid-connected systems: a comprehensive sensitivity analysis. Renew. Energy 35, 101–111 (2010)

    Article  Google Scholar 

  27. M. Percoco, E. Borgonovo, A note on the sensitivity analysis of the internal rate of return. Int. J. Prod. Econ. 135, 526–529 (2012)

    Article  Google Scholar 

  28. C. Bidard, Fixed capital and internal rate of return. J. Math. Econ. 31, 523–541 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. P.D. Gardinera, K. Stewart, Revisiting the golden triangle of cost, time and quality: the role of NPV in project control, success and failure. Int. J. Project Manag. 18, 251–256 (2000)

    Article  Google Scholar 

  30. M.M. Naim, J. Wiknerb, R.W. Grubbström, Anet present value assessment of make-to-order and make-to-stock manufacturing systems. Omega 35, 524–532 (2007)

    Article  Google Scholar 

  31. Q. Zhang, X. Huang, L. Tang, Optimal multinational capital budgeting under uncertainty. Comput. Math. Appl. 62, 4557–4567 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. B.C. Giri, T. Dohi, Optimal lot sizingfor an unreliable production system based on net present value approach. Int. J. Prod. Econ. 92, 157–167 (2004)

    Article  Google Scholar 

  33. E. Bas, A robust approach to the decision rules of NPV and IRR for simple projects. Appl. Math. Comput. 219, 5901–5908 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. C. Gollier, Expected net present value, expected net future value, and the Ramsey rule. J. Environ. Econ. Manag. 59, 142–148 (2010)

    Article  Google Scholar 

  35. P. Hanafizadeh, V. Latif, Robust net present value. Math. Comput. Model. 54, 233–242 (2011)

    Article  MATH  Google Scholar 

  36. C.-K. Chen, T.-W. Hung, T.-C. Weng, A net present value approach in developing optimal replenishment policies for a product life cycle. Appl. Math. Comput. 184, 360–373 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Holopainen, A. Mäkinen, J. Rasinmäki, K. Hyytiäinen, S. Bayazidi, I. Pietilä, Comparison of various sources of uncertainty in stand-level net present value estimates. For. Policy Econ. 12, 377–386 (2010)

    Article  Google Scholar 

  38. Xi Huang, Mean-variance model for fuzzy capital budgeting. Comput. Ind. Eng. 55, 34–47 (2008)

    Article  Google Scholar 

  39. Xi. Huang, Chance-constrained programming models for capital budgeting with NPV as fuzzy parameters. J. Comput. Appl. Math. 198, 149–159 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. W. Wiesemann, D. Kuhn, B. Rustem, Maximizing the net present value of a project under uncertainty. Eur. J. Oper. Res. 202, 356–367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. R.C. Garcia, J. Contreras, P.F. Correia, J.I. Munoz, Transmission assets investment timing using net present value curves. Energy Policy 38, 598–605 (2010)

    Article  Google Scholar 

  42. M. Shiraz, A. Gani, R. Hafeez Khokhar, R. Buyya, A review on distributed application processing frameworks in smart mobile devices for mobile cloud computing. IEEE Commun. Surv. Tutor. 15(3), 1294–1313 (2012). doi:10.1109/SURV.2012.111412.00045

    Article  Google Scholar 

  43. E. Ahmed, M. Shiraz, A. Gani, Spectrum-aware distributed channel assignment in cognitive radio wireless mesh networks. Malays. J. Comput. Sci. 26(3), 232–250 (2013)

    Google Scholar 

  44. N.B. Anuar, H. Sallehudin, A. Gani, O. Zakari, Identifying false alarm for network intrusion detection system using hybrid data mining and decision tree. Malays. J. Comput. Sci. 21(2), 101–115 (2008)

    Google Scholar 

  45. M. Mansoori, O. Zakaria, A. Gani, Improving exposure of intrusion deception system through implementation of hybrid honeypot. Int. Arab J. Inform. Technol. 9(5), 436–444 (2012)

    Google Scholar 

  46. R. Enayatifar, H.J. Sadaei, A.H. Abdullah, A. Gani, Imperialist competitive algorithm combined with refined high-order weighted fuzzy time series for short term load forecasting. Energy Convers. Manag. 76, 1104–1116 (2013)

    Article  Google Scholar 

  47. M. Mohandes, S. Rehman, S.M. Rahman, Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS), Appl. Energy, doi:10.1016/j.apenergy.2011.04.015

    Google Scholar 

  48. R. Ata, Y. Kocyigit, Y. Kocyigit, An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbines. Expert Syst. Appl. 37, 5454–5460 (2010)

    Article  Google Scholar 

  49. J.-S.R. Jang, ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Trans Syst. Man Cyber. 23, 665–685 (1993)

    Article  Google Scholar 

  50. S. Shamshirband, N.B. Anuar, M.L.M. Kiah, A. Patel, An appraisal and design of a multi-agent system based cooperative wireless intrusion detection computational intelligence technique. Eng. Appl. Artif. Intell. 26(9), 2105–2127 (2013)

    Article  Google Scholar 

  51. A.Al, Ghandoor, M. Samhouri, Electricity consumption in the industrial sector of Jordan: application of multivariate linear regression and adaptive neuro-fuzzy techniques. Jordan J. Mech. Ind Eng. 3(1), 69–76 (2009)

    Google Scholar 

  52. R. Singh, A. Kianthola, T.N. Singh, Estimation of elastic constant of rocks using an ANFIS approach. Appl. Soft Comput. 12, 40–45 (2012)

    Article  Google Scholar 

  53. D. Petković, M. Issa, N.D. Pavlović, N.T. Pavlović, L. Zentner, Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties. Expert Syst. Appl. 39, 9477–9482 (2012). ISSN 0957-4174

    Article  Google Scholar 

  54. D. Petković, Ž. Ćojbašić, Adaptive neuro-fuzzy estimation of automatic nervous system parameters effect on heart rate variability. Neural Comput. Appl. 21(8), 2065–2070 (2012)

    Article  Google Scholar 

  55. S. Kurnaz, O. Cetin, O. Kaynak, Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles. Expert Syst. Appl. 37, 1229–1234 (2010)

    Article  Google Scholar 

  56. D. Petković, M. Issa, N.D. Pavlović, L. Zentner, Ž. Ćojbašić, Adaptive neuro fuzzy controller for adaptive compliant robotic gripper. Expert Syst. Appl. 39, 13295–13304 (2012). ISSN 0957-4174

    Article  Google Scholar 

  57. L. Tian, C. Collins, Adaptive neuro-fuzzy control of a flexible manipulator. Mechatronics 15, 1305–1320 (2005)

    Article  Google Scholar 

  58. B.B. Ekici, U.T. Aksoy, Prediction of building energy needs in early stage of design by using ANFIS. Expert Syst. Appl. 38, 5352 (2011)

    Article  Google Scholar 

  59. A. Khajeh, H. Modarress, B. Rezaee, Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers. Expert Syst. Appl. 36, 5728 (2009)

    Article  Google Scholar 

  60. M. Inal, Determination of dielectric properties of insulator materials by means of ANFIS: a comparative study. Expert Syst. Appl. 195, 34 (2008)

    Google Scholar 

  61. S.P. Lo, Y.Y. Lin, The prediction of wafer surface non-uniformity using FEM and ANFIS in the chemical mechanical polishing process. J. Mater. Process. Technol. 168, 250 (2005)

    Article  Google Scholar 

  62. R. Khalifehzadeh, S. Forouzan, H. Arami, S.K. Sadrnezhaad, Prediction of the effect of vacuum sintering conditions on porosity and hardness of porous NiTi shape memory alloy using ANFIS. Comput. Mater. Sci. 40, 359 (2007)

    Article  Google Scholar 

  63. C. Vairappan, H. Tamura, S. Gao, Z. Tang, Batch type local search-based adaptive neuro-fuzzy inference system (ANFIS) with self-feedbacks for time-series prediction. Neurocomputing 72, 1870 (2009)

    Article  Google Scholar 

  64. Y. Han, W. Zeng, Y. Zhao, Y. Qi, Y. Sun, An ANFIS model for the prediction of flow stress of Ti600 alloy during hot deformation process. Comput. Mater. Sci. 50, 2273 (2011)

    Article  Google Scholar 

  65. B. Karaagac, M. Inal, V. Deniz, Predicting Optimum Cure Time of Rubber Compounds by Means of Anfis. Mater. Des. (2011, in Press)

    Google Scholar 

  66. Z. Zhang, K. Friedrich, Artificial neural networks applied to polymer composites: a review. Compos. Sci. Technol. 63, 2029 (2003)

    Article  Google Scholar 

  67. N.O. Jensen, A Note on Wind Generator Interaction (Riso National Laboratory, Roskilde, Denmark, 1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalibor Petković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Atlantis Press and the author(s)

About this paper

Cite this paper

Petković, D., Mitić, V.V., Kocić, L. (2016). Adaptive Neuro-Fuzzy Optimization of Wind Farm Project Investment Under Wake Effect. In: Lee, W., Gadow, R., Mitic, V., Obradovic, N. (eds) Proceedings of the III Advanced Ceramics and Applications Conference. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-157-4_19

Download citation

  • DOI: https://doi.org/10.2991/978-94-6239-157-4_19

  • Published:

  • Publisher Name: Atlantis Press, Paris

  • Print ISBN: 978-94-6239-156-7

  • Online ISBN: 978-94-6239-157-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics