Skip to main content

Interventional Cardiovascular MRI

Current Status and Future Directions

  • Chapter
Interventional Cardiology

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Cardiovascular disease continues to be the leading cause of death in the Western world and the incidence is projected to increase in the future (1). Traditionally, X-ray techniques have been the mainstay in terms of imaging modality for diagnostic and therapeutic cardiovascular procedures. However, there are inherent limitations to this technology including inability to perform three-dimensional imaging, poor soft tissue contrast, and exposure to ionizing radiation and nephrotoxic contrast, agents, which has prompted the exploration for new image-guided modalities. These techniques include ultrasound (transesophageal, intracardiac, and intravascular), laser spectroscopy, computed tomography (CT), optical coherence tomography (OCT), angioscopy, and magnetic resonance (MR) imaging. Of these, in recent years, ultrasound-based techniques have played an important role in diagnostic imaging as well as guiding both cardiac and vascular interventions (2). However, ultrasound is limited by low spatial resolution, inability to easily prescribe multiple imaging planes, and inability to provide detailed functional information related to the physiologic response of catheter or pharmacologic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Heart Association. 2001 heart and stroke statistical update. Dallas, TX.: American Heart Association.

    Google Scholar 

  2. Isner JM, Rosenfield K, Losordo DW, et al. Percutaneous intravascular US as adjunct to catheter-based interventions: preliminary experience in patients with peripheral vascular disease. Radiology 1990;175: 61–70.

    PubMed  CAS  Google Scholar 

  3. Lardo AC. Real-time magnetic resonance imaging: diagnostic and interventional pplications. Pediatr Cardiol 2000;21(1):80–98.

    Article  PubMed  CAS  Google Scholar 

  4. van Vaals JJ, Brummer ME, Dixon WT, et al. “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging 1993;3:671–675.

    Article  PubMed  Google Scholar 

  5. Meyer CH, Hu BS, Nishimura DG, Macovski A. Fast spiral coronary artery imaging. Magn Reson Med 1992; 28:202–213.

    Article  PubMed  CAS  Google Scholar 

  6. Reeder SB, Atalar E, Faranesh AZ, McVeigh ER. Multi-echo segmented k-space imaging: an optimized hybrid sequence for ultrafast cardiac imaging. Magn Reson Med 1994;41:375–385.

    Article  Google Scholar 

  7. Hu X, Parrish T. Reduction of field of view for dynamic imaging. Magn Reson Med 1994;31:691–694.

    Article  PubMed  CAS  Google Scholar 

  8. Weaver JB, Xu Y, Healy DM, Driscoll JR. Waveletencoded MR imaging. Magn Reson Med 1992;24: 275–287.

    Article  PubMed  CAS  Google Scholar 

  9. Bakker CJ, Hoogeveen RM, Hurtak WF, et al. MR-guided endovascular interventions: susceptibilitybased catheter and near-real-time imaging technique. Radiology 1997;202:273–276.

    PubMed  CAS  Google Scholar 

  10. Leung DA, Debatin JF, Wildermuth S, et al. Intravascular MR tracking catheter: preliminary experimental evaluation. Am J Radiol 1995;164: 1265–1270.

    CAS  Google Scholar 

  11. Bakker CJ, Smits HF, Bos C, et al. MR-guided balloon angioplasty: in vitro demonstration of the potential of MRI for guiding, monitoring, and evaluating endovascular interventions. J Magn Reson Imaging 1998;8:245–250.

    Article  PubMed  CAS  Google Scholar 

  12. Frayne R, Strother CM, Unal O, et al. Signal-emitting coatings for interventional MR. In: 1998 Scientific Program, Annual meeting of RSNA, 1998;281.

    Google Scholar 

  13. Omary R, Unal O, Koscielski D, et al. Real-time MR imaging-guided passive catheter tracking with use of gadolinium-filled catheters. J Vasc Interv Radiol 2000;11:1079–1085.

    Article  PubMed  CAS  Google Scholar 

  14. Kochli VD, McKinnon GC, Hofmann E, von Schulthess GK. Vascular interventions guided by ultrafast MR imaging: evaluation of different materials. Magn Reson Med 1994;31:309–314.

    Article  PubMed  CAS  Google Scholar 

  15. Glowinski A, Adam G, Bucher A, et al. Catheter visualization using locally induced, actively controlled field inhomogeneities. Magn Reson Med 1997;38:253–258.

    Article  PubMed  CAS  Google Scholar 

  16. Adam G, Glowinski A, Neuerburg J, et al. Visualization of MR compatible catheters by electrically induced local field inhomogeneities: evaluation in vivo. J Magn Reson Imaging 1998;8:209–213.

    Article  PubMed  CAS  Google Scholar 

  17. Kandarpa K, Jakab P, Patz S, et al. Prototype miniature endoluminal MR imaging catheter. J Vase Interv Radiol 1993;4:419–427.

    Article  CAS  Google Scholar 

  18. Aoki S, Nanbu A, Araki T, et al. Active MR tracking on a 0.2 Tesla MR imager. Radiat Med 1999;17: 251–257.

    PubMed  CAS  Google Scholar 

  19. Wildermuth S, Dumoulin C, Pfammatter T, et al. MR guided percutaneous angioplasty: assessment of tracking safety, catheter handling and functionality. Cardiovasc Intervent Radiol 1998;21: 404–410.

    Article  PubMed  CAS  Google Scholar 

  20. Dumoulin CL, Souza SP, Darrow RD. Real-time position monitoring of invasive devices using magnetic resonance. Mago Reson Med 1993;29:411–415.

    Article  CAS  Google Scholar 

  21. Ladd ME, Zimmermann GG, McKinnon GC, et al. Visualization of vascular guidewires using MR tracking. J Magn Reson Imaging 1998;8:251–253.

    Article  PubMed  CAS  Google Scholar 

  22. Ladd ME, Erhart P, Debatin JF, et al. Guidewire antennas for MR fluoroscopy. Magn Reson Med 1997; 37:891–897.

    Article  PubMed  CAS  Google Scholar 

  23. McKinnon GC, Debatin JF, Leung DA, et al. Towards active guidewire visualization in interventional magnetic resonance imaging. Magma 1996;4:13–18.

    Article  PubMed  CAS  Google Scholar 

  24. Ladd ME, Zimmermann GG, Quick HH, et al. Active MR visualization of a vascular guidewire in vivo. J Magn Reson Imaging 1998;8:220–225.

    Article  PubMed  CAS  Google Scholar 

  25. Wendt M, Busch M, Wetzler R, et al. Shifted rotated keyhole imaging and active tip tracking for interventional procedure guidance. J Magn Reson Imaging 1998;8:258–261.

    Article  PubMed  CAS  Google Scholar 

  26. Ocali O, Atalar E. Intravascular magnetic resonance imaging using a loopless catheter antenna. Magn Reson Med 1997;37:112–118.

    Article  PubMed  CAS  Google Scholar 

  27. Atalar E, Kraitchman DL, Carkhuff B, et al. Catheter-tracking FOV MR fluoroscopy. Magn Reson Med 1998; 40:865–872.

    Article  PubMed  CAS  Google Scholar 

  28. Yang X, Atalar E. Intravascular MR-guided balloon angioplasty using an MR imaging-guidewire: an in vivo feasibility study. Radiology 2000;217:501–506.

    PubMed  CAS  Google Scholar 

  29. Yang X, Bolster B, Kraitchman D, Atalar E. Intravascular MR-monitored balloon angioplasty: an in vivo feasibility study. J Vasc Intervent Radiol 1998;9:953–959.

    Article  CAS  Google Scholar 

  30. Yang X, Atalar E. On-line management of ischemic disease using intravascular MR guided intervention combined with MR perfusion imaging and MR angiography. Circulation 1999;100:I-799.

    Google Scholar 

  31. Solaiyappan M, Lee J, Atalar E. Depth reconstruction from projection images for 3D visualization of intravascular MRI probes. In: 7th scientific meeting and exhibition, ISMRM, 1999.

    Google Scholar 

  32. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316(22): 1371–1375.

    Article  PubMed  CAS  Google Scholar 

  33. George BS. Combined coronary and peripheral intervention: The oculo-stenotic-dilatory reflex or good medicine? Cathet Cardiovasc Intervent 2001;52(1):105.

    Article  Google Scholar 

  34. Zimmermann-Paul GG, Quick HH, Vogt P, et al. High-resolution intravascular magnetic resonance imaging monitoring of plaque formation in heritable hyperlipidemic rabbits. Circulation 1999;99:1054–1061.

    PubMed  CAS  Google Scholar 

  35. Martin AJ, McLoughlin RF, Chu KC, et al. An expandable intravenous RF coil for arterial wall imaging. J Magn Reson Imaging 1998;8:226–234.

    Article  PubMed  CAS  Google Scholar 

  36. Shunk KA, Lima JA, Heldman AW, Atalar E. Transesophageal magnetic resonance imaging. Magn Reson Med 1999;41:722–726.

    Article  PubMed  CAS  Google Scholar 

  37. Steen H, Warren WP, Gautam S, et al. Combined transesophageal-surface MRI monitors progressive reverse remodelling in patients with aortic atherosclerosis after 6 and 12 months of statin therapy. Abstract presented at AHA, 2003.

    Google Scholar 

  38. Godart F, Beregi J, Nicol L, et al. MR-guided balloon angioplasty of stenosed aorta: in vivo evaluation using near-standard instruments and a passive tracking technique. J Magn Reson Imaging 2000;12:639–644.

    Article  PubMed  CAS  Google Scholar 

  39. Le-Blanche A, Rossert J, Wassef M, et al. MR-guided PTA in experimental bilateral rabbit renal artery stenosis and MR angiography follow-up versus histomorphometry. Cardiovasc Intervent Radiol 2000;23:368–374.

    Article  PubMed  CAS  Google Scholar 

  40. Omary R, Frayne R, Unal O, et al. MR-guided angioplasty of renal artery stenosis in a pig model: a feasibility study. J Vasc Intervent Radiol 2000;11: 373–381.

    Article  CAS  Google Scholar 

  41. Serfaty JM, Yang X, Foo TK, et al. MRI-guided coronary catheterization and PTCA: A feasibility study on a dog model. Magn Reson Med 2003;49:258–263.

    Article  PubMed  Google Scholar 

  42. Serruys PW SB, Beatt KJ, et al. Angiographic follow upafter placement of self expanding coronary artery stents. N Engl J Med 1991;324:13–17.

    Article  PubMed  CAS  Google Scholar 

  43. Mehta RH, Bates ER. Coronary stent implantation in acute myocardial infaction. Am Heart J 1999;137: 603–611.

    Article  PubMed  CAS  Google Scholar 

  44. De Feyter PJ FD. Coronary stent implantation: a panacea for the interventional cardiologist? Eur Heart J 2000;21:1719–1726.

    Article  PubMed  Google Scholar 

  45. Sodickson DK, McKenzie CA, Li W, et al. Contrast enhanced 3D MR angiography with simultaneous acquisition of spatial harmonics: a pilot study. Radiology 2000;217:284–289.

    PubMed  CAS  Google Scholar 

  46. Sodickson DK, McKenzie CA. A generalized approach to parallel magnetic resonance imaging. Med Phys 2001;28:1629–1643.

    Article  PubMed  CAS  Google Scholar 

  47. Hug J, Nagel E, Bornstedt A, et al. Coronary arterial stents: safety and artifacts during MR imaging. Radiology 2000;216:781–787.

    PubMed  CAS  Google Scholar 

  48. Buecker A, Spuentrup E, Ruebben A, Gunther R. Artifact-free in-stent lumen visualization by standard magnetic resonance angiography using a new metallic magnetic resonance imaging stent. Circulation 2002;105: 1772–1775.

    Article  PubMed  Google Scholar 

  49. Buecker A, Neuerburg J, Adam G, et al. Real-time MR fluoroscopy for MR-guided iliac artery stent placement. J Magn Reson Imaging 2000;12:616–622.

    Article  PubMed  CAS  Google Scholar 

  50. Spuentrup E, Ruebben A, Schaeffter T, et al. Magnetic resonance-guided coronary artery stent placement in a swine model. Circulation 2002;105:874–879.

    Article  PubMed  Google Scholar 

  51. Manke C, Nitz W, Djavidani B, et al. MR imaging-guided stent placement in iliac arterial stenoses: a feasibility study. Radiology 2001;219:527–534.

    PubMed  CAS  Google Scholar 

  52. Lardo A. High resolution intravascular imaging following magnetic resonance guided aortic stent placement. Circulation 2001.

    Google Scholar 

  53. Swartz JF, Pellersels G, Silvers J, et al. A catheter-based curative approach to atrial fibrillation in humans. Circulation 1994;90(Suppl. I):I-335 (abstract).

    Google Scholar 

  54. Haissaguerre M, Gencel L, Fischer B, et al. Successful catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 1994;5:1045–1052.

    Article  PubMed  CAS  Google Scholar 

  55. Lardo AC, McVeigh ER, Atalar E, et al. Magnetic resonance guided radiofrequency ablation: visualization and temporal characterization of thermal lesions. Circulation 1998;98:3385.

    Google Scholar 

  56. Halperin HR, Lardo AC, McVeigh ER, et al. Catheter placement and high fidelity electrophysiologic signal acquisition during magnetic resonance imaging. PACE;1999.

    Google Scholar 

  57. Kalman JM, Fitzpatrick AP, Olgin JE, et al. Biophysical characteristics of radiofrequency lesion formation in vivo: dynamics of catheter tip-tissue contact evaluated by intracardiac echocardiography. Am Heart J 1997; 133: 8–18.

    Article  PubMed  CAS  Google Scholar 

  58. Nabel E. Gene therapy for cardiovascular disease. Circulation 1995;91:541–548.

    PubMed  CAS  Google Scholar 

  59. Isner J. Manipulating angiogenesis against vascular disease. Hosp Pract 1999;34:69–74.

    Article  CAS  Google Scholar 

  60. Crystal R. Transfer of genes to humans: early lessons and obstacles to success. Science 1995;270: 404–410.

    Article  PubMed  CAS  Google Scholar 

  61. Leiden J. Beating the odds: a cardiomyocyte cell line at last. J Clin Invest 1999;103:591–592.

    PubMed  CAS  Google Scholar 

  62. Dzau V. The concept and potentials of cardiovascular gene therapy. Indian Heart J 1998;50:23–33.

    PubMed  CAS  Google Scholar 

  63. Sinnaeve P, Varenne O, Collen D, Janssens S. Gene therapy in the cardiovascular system: an update. Cardiovasc Res 1999;44:498–506.

    Article  PubMed  CAS  Google Scholar 

  64. Yang X, Atalar E, Li D, et al. Magnetic resonance imaging permits in vivo monitoring of catheter based vascular gene delivery. Circulation 2001;104:1588–1590.

    Article  PubMed  CAS  Google Scholar 

  65. Nabel E, Leiden J. Gene transfer approaches for cardiovascular disease. In: Chien K, ed. Molecular basis of cardiovascular disease. Philadelphia: WB Saunders; 1999;86–112.

    Google Scholar 

  66. Takai T, Ohmori H. Enhancement of DNA transfection efficiency by heat treatment of cultured mammalian cells. Biochem Biophys Acta 1992;1129:161–165.

    PubMed  CAS  Google Scholar 

  67. Greenleaf W, Bolander M, Sarkar G, et al. Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound Med Biol 1998;24:587–595.

    Article  PubMed  CAS  Google Scholar 

  68. Blackburn R, Galoforo S, Corry P, Lee Y. Adenoviral-mediated transfer of a heat inducible double suicide gene into prostate carcinoma cells. Cancer Res 1998;58:1358–1362.

    PubMed  CAS  Google Scholar 

  69. Qiu B, Yeung C, Du X, Atalar E, Yang X. Using an MR imging-guidewire as an intravascular heating source: toward thermal enhancement of vascular gene transfection under MR guidance. In 10th Scientific Meeting and Exhibition Program, International Society for Magnetic Resonance in Medicine, 2002 (abstract).

    Google Scholar 

  70. Yang X, Atalar E, Zerhouni EA. Intravascular MR imaging and intravascular MR guided interventions. Int J Cardiovasc Intervent 1999;2:85–96.

    PubMed  Google Scholar 

  71. Yang X, Serfaty J, Quick H, et al. Intracoronary high-resolution MR imaging using an loopless receiver antenna: An initial in vivo study. In 2000 Scientific Program, annual meeting of RSNA, 2000:286.

    Google Scholar 

  72. Du X, Qiu B, Wang D, Yang X. MR imaging-guidewire as a heating source for enhancement of gene transduction in human vascular smooth muscle cells. In: 10th Scientific Meeting and Exhibition Program, International Society for Magnetic Resonance in Medicine, 2002 (abstract).

    Google Scholar 

  73. Du X, Qiu B, Yang X. Intravascular MR imaging/RF heating-enhanced vascular gene transduction: an in vivo feasibility study. In: 11th Scientific Meeting and Exhibition Program, International Society for Magnetic Resonance in Medicine, 2003.

    Google Scholar 

  74. Bogdanov A, Weissleder R. The development of in vivo imaging systems to study gene expression. Trends Biotechnol 1998;16:5–10.

    Article  PubMed  CAS  Google Scholar 

  75. Weissleder R, Moore A, Mahmood U, et al. In vivo magnetic resonance imaging of transgene expression. Nature Med 2000;6:351–354.

    Article  PubMed  CAS  Google Scholar 

  76. Lewin M, Bredow S, Sergeyev N, et al. In vivo assessment of vascular endothelial growth factor-induced angiogenesis. Int J Cancer 1999;83:798–802.

    Article  PubMed  CAS  Google Scholar 

  77. Pearlman J, Laham R, Simons M. Coronary angiogenesis: detection in vivo with MR imaging sensitive to collateral neocirculation—preliminary study in pigs. Radiology 2000;214:801–807.

    PubMed  CAS  Google Scholar 

  78. Budinger TF. Nuclear magnetic resonance (NR) in vitro studies: known thresholds for health effects. J Comput Assist Tomogr 1981;5:800–811.

    Article  PubMed  CAS  Google Scholar 

  79. Wildermuth S, Dumoulin CL, Pfammatter T, et al. MR-guided percutaneous angioplasty: assessment of tracking safety, catheter handling and functionality. Cardiovasc Intervent Radiol 1998;21:404–410.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Desai, M.Y., Lardo, A.C., Lima, J.A.C. (2005). Interventional Cardiovascular MRI. In: Herrmann, H.C. (eds) Interventional Cardiology. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-898-6:405

Download citation

  • DOI: https://doi.org/10.1385/1-59259-898-6:405

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-367-1

  • Online ISBN: 978-1-59259-898-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics