Skip to main content

Methane Uptake by Temperate Forest Soils

  • Chapter
  • First Online:
Functioning and Management of European Beech Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 208))

Abstract

Net uptake of atmospheric methane by methanotrophic bacteria in forest soils is generally less than 20 kg CH4 ha−1 per year and therefore has almost no impact on the carbon budget of forest ecosystems. However, terrestrial soils are the most important biological sink for atmospheric methane, consuming between 20 and 45 Tg CH4 per year (Smith et al. 2000; Dutaur and Verchot 2007). The methane concentration in the atmosphere increased from about 700 to 1,774 ppb (by volume) during the last 150 years, though the concentration has possibly stabilised during the past decade (IPCC 2007). Methane currently contributes approximately 18% to the anthropogenic greenhouse effect and has a global warming potential 25 times higher than that of CO2 based on a time horizon of 100 years (IPCC 2007). Human activities have reduced the soil sink for atmospheric methane by converting natural forests and grasslands to coniferous plantations, agricultural and urban land (Ojima et al. 1993; Dobbie et al. 1996; Smith et al. 2000; Borken et al. 2003; Borken and Beese 2006) and by causing acid deposition in temperate forests (Brumme and Borken 1999). Undisturbed forest soils generally consume much higher rates of atmospheric methane than agricultural and urban soils, although the methane uptake rates may vary considerably within and among forests over all climatic regions. Comparisons of adjacent forest and agricultural soils showed that converting forest land to agricultural use reduced methane uptake rates by two-thirds in both temperate and tropical regions (Smith et al. 2000). The mechanisms for long-term reduction in methane uptake are not completely understood. Disturbances of the soil structure as well as changes in vegetation, micro-climate, and nutrient status may have diminished the population of methane-utilising bacteria in several ways after land conversion to agricultural use. It is believed that these still unidentified bacteria have an extremely slow growth rate due to the small atmospheric methane concentration. Methanotrophs have a high affinity for methane as indicated by low K m values and low threshold concentrations (Bender and Conrad 1993). Smith et al. (2000) pointed out that it probably takes more than 200 years for methane utilising bacteria to recover after reversion of agricultural land to forest or grassland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ball BC, Smith KA, Klemedtsson L, Brumme R, Sitaula BK, Hansen S, Priemé A, MacDonald J, Horgan GW (1997) The influence of soil gas transport properties on methane oxidation in a selection of northern European soils. J Geophys Res 102:23309–23317

    Article  CAS  Google Scholar 

  • Bartsch N, Bauhus J, Vor T (2002) Effects of group selection and liming on nutrient cyling in an European beech forest on acidic soil. In: Dohrenbusch A, Bartsch N (eds) Forest development. Springer, Berlin, pp 109–142

    Google Scholar 

  • Bauhus J, Bartsch N (1995) Mechanisms for carbon and nutrient release and retention in beech forest gaps. I. Microclimate, water balance and seepage water chemistry. Plant Soil 168–169:579–584

    Article  Google Scholar 

  • Beese F, Meiwes KJ (1995) 10 Jahre Waldkalkung: Stand und Perspektiven. AFZ 17:946–949

    Google Scholar 

  • Bender M, Conrad R (1993) Kinetics of methane oxidation in oxic soils. Chemosphere 26:687–696

    Article  CAS  Google Scholar 

  • Benstead J, King GM (2001) The effect of soil acidification on atmospheric methane uptake by a Maine forest soil. FEMS Microb Ecol 34:207–212

    CAS  Google Scholar 

  • Borken W (1996) Methan-Aufnahme und Kohlendioxid-Freisetzung von Waldböden. Berichte des Forschungszentrums Waldökosysteme Univ Göttingen A137, pp 1–182

    Google Scholar 

  • Borken W, Brumme R (1997) Liming practice in temperate forest ecosystems and the effects on CO2, N2O and CH4 fluxes. Soil Use Manage 13:251–257

    Article  Google Scholar 

  • Borken W, Gründel S, Beese F (2000a) Potential contribution of Lumbricus terrestris L to carbon dioxide, methane and nitrous oxide fluxes from a forest soil. Biol Fertil Soils 32:142–148

    Article  CAS  Google Scholar 

  • Borken W, Xu YJ, Brumme R (2000b) Effects of prolonged soil drought on CH4 oxidation in a temperate spruce forest. J Geophys Res 105:7079–7088

    Article  CAS  Google Scholar 

  • Borken W, Beese F, Brumme R, Lamersdorf N (2002) Long-term reduction in nitrogen and proton inputs did not affect atmospheric CH4 uptake and N2O emission from a German spruce forest soil. Soil Biol Biochem 34:1815–1819

    Article  CAS  Google Scholar 

  • Borken W, Xu YJ, Beese F (2003) Conversion of hardwood forests to spruce and pine plantations strongly reduced soil methane sink in Germany. Glob Chang Biol 9:956–966

    Article  Google Scholar 

  • Borken W, Beese F (2006) Methane and nitrous oxide fluxes of soils in pure and mixed stands of European beech and Norway spruce. European Journal of Soil Science 57: 617–625.

    Google Scholar 

  • Borken W, Davidson EA, Savage K, Sundquist ET, Steudler P (2006) Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil. Soil Biol Biochem 38:1388–1395

    Article  CAS  Google Scholar 

  • Born M, Dörr H, Levin I (1990) Methane consumption in aerated soils of the temperate zone. Tellus 42:2–8

    Article  Google Scholar 

  • Bradford MA, Wookey PA, Ineson P, Lappin-Scott HM (2001) Controlling factors and effects of chronic nitrogen and sulphur deposition on methane oxidation in a temperate forest soil. Soil Biol Biochem 33:93–102

    Article  CAS  Google Scholar 

  • Brumme R, Beese F (1995) Automated monitoring of biological trace gas production and consumption. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, San Diego, CA, pp 468–472

    Google Scholar 

  • Brumme R, Borken W (1999) Site variation in methane oxidation as affected by atmospheric deposition and type of temperate forest ecosystem. Glob Biogeochem Cycles 13:493–501

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Papen H (2002) Four years continuous record of CH4-exchange between the atmosphere and untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany. Plant Soil 240:77–90

    Article  CAS  Google Scholar 

  • Castro MS, Steudler PA, Melillo JM, Aber JD, Bowden RD (1995) Factors controlling atmospheric methane consumption by temperate forest soils. Glob Biogeochem Cycles 9:1–10

    Article  CAS  Google Scholar 

  • Crill PM (1991) Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil. Glob Biogeochem Cycles 5:319–334

    Article  CAS  Google Scholar 

  • Dannenmann M, Gasche R, Ledebuhr A, Holst T, Mayer H, Papen H (2007) The effect of forest management on trace gas exchange at the pedosphere-atmosphere interface in beech (Fagus sylvatica L.) forests stocking on calcareous soils. Eur J For Res 126:331–346

    CAS  Google Scholar 

  • Dobbie KE, Smith KA, Priemé A, Christensen S, Degorska A, Orlanski P (1996) Effect of land use on the rate of methane uptake by surface soils in northern Europe. Atmos Environ 30:1005–1011

    Article  CAS  Google Scholar 

  • Dunfield P, Knowles R (1995) Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol. Appl Environ Microbiol 61:3129–3135

    CAS  PubMed  Google Scholar 

  • Dutaur L, Verchot LV (2007) A global inventory of the soil CH4 sink. Glob Biogeochem Cycles 21:GB4013

    Article  Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Chapman and Hall, NY

    Google Scholar 

  • Fiedler S, Höll BS, Jungkunst HF (2005) Methane budget of a Black Forest spruce ecosystem considering soil pattern. Biogeochemistry 76:1–20

    Article  CAS  Google Scholar 

  • Gulledge J, Doyle AP, Schimel JP (1997) Different NH4 +-inhibition patterns of soil CH4 consumption – a result of distinct CH4-oxidizer populations across sites. Soil Biol Biochem 29:13–21

    Article  CAS  Google Scholar 

  • Gulledge J, Hrywna Y, Cavanaugh C, Seudler PA (2004) Effects of long-term nitrogen fertilization on the uptake kinetics of atmospheric methane in temperate forest soils. Soil Biol Biochem 49:389–400

    CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 996

    Google Scholar 

  • Kasimir-Klemedtsson A, Klemedtsson L (1997) Methane uptake in Swedish forest soil in relation to liming and extra N-deposition. Biol Fertil Soils 25:296–301

    Article  Google Scholar 

  • King GM, Adamsen APS (1992) Effects of temperature on methane consumption in a forest soil and in pure cultures of the methanotroph Methylomonas rubra. Appl Environ Microbiol 58:2758–2763

    CAS  PubMed  Google Scholar 

  • Klemedtsson L, Kasimir-Klemedtsson A, Moldan F, Weslien P (1997) Nitrous oxide emission from Swedish forest soils in relation to liming and simulated increased N-deposition. Biol Fertil Soils 25:290–295

    Article  CAS  Google Scholar 

  • Knief C, Lipski A, Dunfield PF (2003) Diversity and activity of methanotrophic bacteria in different upland soils. Appl Environ Microbiol 69:6703–6714

    Article  CAS  PubMed  Google Scholar 

  • Kolb S, Knief C, Dunfield PF, Conrad R (2005) Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ Microbiol 7:1150–1161

    Article  CAS  PubMed  Google Scholar 

  • Marrero TR, Mason EA (1972) Gaseous diffusion coefficients. J Chem Ref Data 1:3–118

    Article  CAS  Google Scholar 

  • Matzner E (2004) Biogeochemistry of forested catchments in a changing environment. Ecol Stud 172:1–498

    Google Scholar 

  • Meiwes KJ, Merino A, Beese FO (1998) Chemical composition of throughfall, soil water, leaves and leaf litter in a beech forest receiving long term application of ammonium sulphate. Plant Soil 201:217–230

    Article  CAS  Google Scholar 

  • Mochoge B, Beese F (1983) The behavior of nitrogen fertilizers in neutral and acid loess soils. II. Distribution and balances of 15N tagged nitrogen. Z Pflanzern Bodenk 146:504–515

    Article  CAS  Google Scholar 

  • Ojima DS, Valentine DW, Mosier AR, Parton WJ, Schimel DS (1993) Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere 26:675–685

    Article  CAS  Google Scholar 

  • Potter CS, Davidson EA, Verchot LV (1996) Estimation of global biogeochemical controls and seasonality in soil methane consumption. Chemosphere 32:2219–2246

    Article  CAS  Google Scholar 

  • Priemé A, Christensen S (1997) Seasonal and spatial variation of methane oxidation in a Danish spruce forest. Soil Biol Biochem 29:1165–1172

    Article  Google Scholar 

  • Puhe J, Ulrich B (2001) Global climate change and human impacts on forest ecosystems. Ecol Stud 143:1–592

    Google Scholar 

  • Saari A, Heiskanen J, Martikainen PJ (1998) Effect of the organic horizon on methane oxidation and uptake in soil of a boreal Scots pine forest. FEMS Microbiol Ecol 26:245–255

    Article  CAS  Google Scholar 

  • Saari A, Rinnan R, Martikainen PJ (2004) Methane oxidation in boreal forest soils: kinetics and sensitivity to pH and ammonium. Soil Biol Biochem 36:1037–1046

    Article  CAS  Google Scholar 

  • Schaefer M, Schauermann J (1990) The soil fauna of beech forests: comparison between a mull and a moder soil. Pedobiologia 34:299–314

    Google Scholar 

  • Sitaula BK, Bakken LR, Abrahamsen G (1995) CH4 uptake by temperate forest soil: effect of N input and soil acidification. Soil Biol Biochem 27:871–880

    Article  CAS  Google Scholar 

  • Smith KA, Dobbie KE, Ball BC, Bakken LR, Sitaula BK, Hansen S, Brumme R, Borken W, Christensen S, Priemé A, Fowler D, MacDonald JA, Skiba U, Klemedtsson L, Kasimir-Klemedtsson A, Degorska A, Orlanski P (2000) Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Glob Chang Biol 6:791–803

    Article  Google Scholar 

  • Steudler PA, Bowden RD, Mellilo JM, Aber J (1989) Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature 341:314–315

    Article  Google Scholar 

  • Tate KR, Ross DJ, Saggar S, Hedley CB, Dando J, Singh BK, Lambie SM (2007) Methane uptake in soils from Pinus radiata plantations, a reverting shrubland and adjacent pasture: effects of land use change, and soil texture, water and mineral nitrogen. Soil Biol Biochem 39:1437–1449

    Article  CAS  Google Scholar 

  • Teepe R, Brumme R, Beese F, Ludwig B (2004) Nitrous oxide emission and methane consumption following compaction of forest soils. Soil Sci Soc Am J 68:605–611

    Article  CAS  Google Scholar 

  • Veerhoff M, Roscher S, Brümmer GW (1996) Ausmaß und ökologische Gefahren der Versauerung von Böden unter Wald. Berichte des Umweltbundesamtes 1, Erich Schmidt Verlag, Berlin, S1–S364

    Google Scholar 

  • Whalen SC (2000) Influence of N and non–N salts on atmospheric methane oxidation by upland boreal forest and tundra soils. Biol Fertil Soils 31:279–287

    Article  CAS  Google Scholar 

  • Whalen SC, Reeburgh WS, Sandbeck KA (1990) Rapid methane oxidation in a landfill cover soil. Appl Environ Microbiol 56:3405–3411

    CAS  PubMed  Google Scholar 

  • Yavitt JB, Simmons JA, Fahey TJ (1993) Methane fluxes in a northern hardwood forest ecosystem in relation to acid precipitation. Chemosphere 26:721–730

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Borken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Borken, W., Brumme, R. (2009). Methane Uptake by Temperate Forest Soils. In: Brumme, R., Khanna, P.K. (eds) Functioning and Management of European Beech Ecosystems. Ecological Studies, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b82392_20

Download citation

Publish with us

Policies and ethics