Skip to main content

Comparative aspects of muscle elastic proteins

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 138))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auber J, Couteaux R (1963) Ultrastructure de la strie dans des muscle de Dipteres. J Microsc Paris 2:309–324

    Google Scholar 

  • Ayme-Southgate A, Vigoreaux J, Benian G M, Pardue M L (1991) Drosophila has a twitchin/titin-related gene that appears to encode projectin. Proc Natl Acad Sci USA 88:7973–7977

    Article  PubMed  CAS  Google Scholar 

  • Ayme-Southgate A, Southgate R, Saide J D, Benian G M, Pardue M L (1995) Both synchronous and asynchronous muscle isoforms of projectin (the Drosophila bent locus product) contain functional kinase domains. J Cell Biol 128:393–403

    Article  PubMed  CAS  Google Scholar 

  • Benian G M, Kiff J E, Neckelmann N, Moerman D G, Waterston R H (1989) Sequence of an unusually large protein implicated in regulation of myosin activity in C. elegans. Nature 342:45–50

    Article  PubMed  CAS  Google Scholar 

  • Benian G M, L’Hernault S W, Morris M E (1993) Additional sequence complexity in the muscle gene, unc-22, and its encoded protein, twitchin, of C. elegans. Genetics 134:1097–1104

    PubMed  CAS  Google Scholar 

  • Benian G M, Tang X, Tinly T L (1996a) Twitchin and related giant Ig super family members of C. elegtans and other invertebrates. Adv Biophys 33:175–198

    Article  Google Scholar 

  • Benian G M, Tinley T L, Tang X, Borodovsky M (1996b) The Caenorhabditis elegans gene unc-89, required for muscle M-line assembly, encodes a giant modular protein composed of Ig and signal transduction domains. J Cell Biol 132:835–848

    Article  PubMed  CAS  Google Scholar 

  • Bullard B, Leonard K (1996) Modular proteins of insect muscle. Adv Biophys 33:211–222

    Article  PubMed  CAS  Google Scholar 

  • Eilertsen K J, Keller T C S (1992) Identification and characterization of two huge protein components of the brush border cytoskeleton: Evidence for a cellular isoform of titin. J Cell Biol 119:549–557

    Article  PubMed  CAS  Google Scholar 

  • Eilertsen K J, Kazmierski S T, Keller T C S (1994) Cellular titin localization in stress fibers and interaction with myosin II filaments in vitro. J Cell Biol 126:1201–1210

    Article  PubMed  CAS  Google Scholar 

  • Fukuzawa A, Kohei S, Yajima H, Kimura S, Maruyama K (1997) Partial sequence of crayfish claw muscle connectin and its localization. Zool Sci 14:54

    Google Scholar 

  • Fürst D O, Osborn M, Nave R, Weber K (1988) The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: A map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 106:1563–1572

    Article  PubMed  Google Scholar 

  • Fyrberg C C, Labeit S, Bullard B, Leonard K, Fyrberg E (1992) Drosophila projectin: relatedness to titin and twitchin and correlation with lethal (4) 102 CDa and bent-dominant mutants. Proc Roy Soc Lond B 249:33–40

    Article  Google Scholar 

  • Guba F, Harsasnyi V, Vajda E (1968) Ultrastructure of myofibrils after selective protein extraction. Acta Biochim Biophys Acad Sci Hung 3:435–442

    Google Scholar 

  • Hattori A, Ishii T, Tatsumi R, Takahashi K (1995) Changes in the molecular types of connectin and nebulin during development of chicken skeletal muscle. Biochim Biophys Acta 1244:179–184

    PubMed  Google Scholar 

  • Heierhorst J, Probst W C, Vilim F S, Buku A, Weiss K R (1994) Autophosphorylation of molluscan twitchin and interaction of its kinase domain with calcium/calmodulin. J Biol Chem 269:21086–21093

    PubMed  CAS  Google Scholar 

  • Heierhorst J, Probst W C, Kohanski R A, Buku A, Weiss K R (1995) Phosphorylation of myosin regulatory light chains by the molluscan twitchin kinase. Eur J Biochem 233:426–431

    Article  PubMed  CAS  Google Scholar 

  • Heierhorst J, Kobe B, Feil S C, Parker M W, Benian G M, Weiss K R, Kemp B E (1996) Ca2+/S100 regulation of giant protein kinases. Nature 380:636–639

    Article  PubMed  CAS  Google Scholar 

  • Hoyle G (1983) Muscle and their neural control. John Wiley and Sons, New York, pp 90–100

    Google Scholar 

  • Horowits R, Kempner E S, Bisher M E, Podolsky R J (1986) A physiological role for titin and nebulin in skeletal muscle. Nature 323:160–164

    Article  PubMed  CAS  Google Scholar 

  • Hu D H, Kimura S, Maruyama K (1986) Sodium dodecyl sulfate gel electrophoresis studies of connectin-like high molecular weight proteins of various types of vertebrate and invertebrate muscles. J Biochem 99:1485–1492

    PubMed  CAS  Google Scholar 

  • Hu D H, Kimura S, Kawashima S, Maruyama K (1989) Calcium-activated neutral protease quickly converts α-connectin to β-connectin in chicken breast muscle myofibrils. Zool Sci 6:797–800

    CAS  Google Scholar 

  • Hu D H, Matsuno A, Terakado K, Matsuura T, Kimura S, Maruyama K (1990) Projectin is an invertebrate connectin (titin): Isolation from crayfish claw muscle and localization in crayfish claw muscle and insect flight muscle. J Muscle Res Cell Motil 11:497–511

    Article  PubMed  CAS  Google Scholar 

  • Huxley H E, Hanson J (1954) Changes in the cross striations of muscle during contraction and stretch and their structural interpretations. Nature 173:973–976

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Hu D H, Ohashi K, Kimura S, Maruyama K (1987) Lamprey connectin. Zool Sci 4:379–380

    Google Scholar 

  • Kawamura Y, Ohtani Y, Maruyama K (1994a) Biodiversity of the localization of the epitopes to connectin antibodies in the sarcomeres of lamprey, electric ray, and horse mackerel skeletal muscles. Tissue & Cell 26:677–685

    Article  CAS  Google Scholar 

  • Kawamura Y, Suzuki J, Kimura S, Maruyama K (1994b) Characterization of connectin-like proteins of obliquely striated muscle of a polychaete (Annelida). J Muscle Res Cell Motil 15:623–632

    Article  PubMed  CAS  Google Scholar 

  • Kawamura Y, Ohtsuka H, Murata H, Maki S, Ohtani Y, Manabe T, Kimura S, Maruyama K (1996) Comparative aspects of muscle elastic protein. Adv Biophys 33:175–181

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer M S, Smith S B, Granzier H L, Bustamante C (1997) Folding-unfolding transtitions in single titin molecules characterized with laser tweezers. Science 276:1112–1116

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Maruyama K (1983) Preparation of native connectin from chicken breast muscle. J Biochem 94:2083–2085

    PubMed  CAS  Google Scholar 

  • Kimura S, Maruyama K (1989) Isolation of α-connectin, an elastic protein, from rabbit skeletal muscle. J Biochem 106:952–954

    PubMed  CAS  Google Scholar 

  • Kimura S, Maki S, Maruyama K (1993) The role of a thiol protease in the proteolysis of connectin in rabbit skeletal muscle myofibrils. Biomed Res 14 Suppl 2:89–92

    CAS  Google Scholar 

  • Kimura S, Kawamura Y, Kubokawa K, Watanabe A, Maruyama K (1997) Connectinlike protein in Amphioxus striated muscle. Zool Sci 14:78

    Google Scholar 

  • Labeit S, Kolmerer B (1995) Titins: Giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296

    Article  PubMed  CAS  Google Scholar 

  • Lakey A, Ferguson C, Labeit S, Reedy M, Larkins A, Butcher G, Leonard K, Bullard B (1990) Identification and localization of high molecular weight proteins in insect flight and leg muscle. EMBO J 9:3459–3467

    PubMed  CAS  Google Scholar 

  • Lakey A, Labeit S, Gautel M, Ferguson C, Barlow D P, Leonard K, Bullard B (1993) Kettin, a large modular protein in the Z-disc of insect muscles. EMBO J 12:2863–2871

    PubMed  CAS  Google Scholar 

  • Locker R H, Wild D J C (1986) A comparative study of high molecular weight proteins in various types of muscle across the animal kingdom. J Biochem 99:1473–1484

    PubMed  CAS  Google Scholar 

  • Maki S, Kimura S, Maruyama K (1994) Localization of connectin-like proteins in the giant sarcomeres of barnacle muscle. Zool Sci 11:821–824

    CAS  Google Scholar 

  • Maki S, Ohtani Y, Kimura S, Maruyama K (1995) Isolation and characterization of a kettin-like protein from crayfish claw muscle. J Muscle Res Cell Motil 16:579–585

    Article  PubMed  CAS  Google Scholar 

  • Manabe T, Kawamura Y, Higuchi H, Kimura S, Maruyama K (1993) Connectin, giant elastic protein, in giant sarcomeres of crayfish claw muscle. J Muscle Res Cell Motil 14:654–665

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Matsubara S, Natori Y, Nonomura Y, Kimura S, Ohashi K, Murakami F, Handa S, Eguchi G (1977) Connectin, an elastic protein of muscle: characterization and function. J Biochem 82:317–337

    PubMed  CAS  Google Scholar 

  • Maruyama K, Kimura S, Yoshidomi H, Sawada H, Kikuchi M (1984) Molecular size and shape of β-connectin, an elastic protein of striated muscle. J Biochem 95:1423–1433

    PubMed  CAS  Google Scholar 

  • Maruyama K (1986) Connectin, an elastic filamentous protein of striated muscle. Int Rev Cytol 104:81–114

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K (1994) Connectin, an elastic protein of striated muscle. Biophys Chem 50:73–85

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Ohtani Y, Maki S, Kawamura Y, Benian G M, Kagawa H, Kimura S (1995) Connectin-related phenomena and biodiversity of the connectin family. In: Maruyama K, Nonomura Y, Kohama K (eds) Calcium as cell signal. Igakushoin, Tokyo, pp 73–79

    Google Scholar 

  • Maruyama K, Kimura S (eds) (1996) Muscle elastic proteins. Adv Biophys 33:1–241

    Google Scholar 

  • Maruyama K (1997) Connectin/Titin, giant elastic protein of muscle. FASEB J 11:341–345

    PubMed  CAS  Google Scholar 

  • Matsuno A, Takano-Ohmuro H, Itoh Y, Matsuura T, Shibata M, Nakae H, Kaminuma T, Maruyama K (1989) Anti-connectin monoclonal antibodies that react with the unc-22 gene product bind dense bodies of Caenorhabditis (nematode) bodywall muscle cells. Tissue & Cell 21:495–505

    Article  Google Scholar 

  • McNail P A, Hoyle G (1967) Evidence for superthin filaments. Am Zoologist 7:483–498

    Google Scholar 

  • Nakauchi Y, Maruyama K (1992) Immunoblot detection of vertebrate-type of connectin (titin) in ascidian bodywall muscle and tadpole. Zool Sci 9:219–221

    CAS  Google Scholar 

  • Natori R (1954) The property and contraction process of isolated myofibrils. Jikeikai Med J 1:18–23

    Google Scholar 

  • Nave R, Weber K (1990) A myofibrillar protein of insect muscle related to vertebrate titin connects Z-band and A-band:purification and molecular characterization of invertebrate mini-titin. J Cell Sci 95:535–544

    PubMed  CAS  Google Scholar 

  • Nave R, Fürst D O, Vinkemeier U, Weber K (1991) Purification and physical properties of nematode mini-titins and their relation to twitchin. J Cell Sci 98:491–496

    PubMed  CAS  Google Scholar 

  • Obinata T (1993) Contractile proteins and myofibrillogenesis. Int Rev Cytol 143:153–189

    Article  PubMed  CAS  Google Scholar 

  • Ohtani Y, Maki S, Kimura S, Maruyama K (1996) Localization of connectin-like proteins in leg and flight muscles of insects. Tissue & Cell 28:1–8

    Article  CAS  Google Scholar 

  • Pringle J W S (1977) The mechanical characterization of insect fibrillar muscle. In: Tregear R T (eds) The mechanical characterization of insect fibrillar muscle. Elsevier, Amsterdam, pp 177–196 Probst W C, Cropper E C, Heierhorst J, Hooper S L, Jaffe H, Vilim F, Beushausen S.

    Google Scholar 

  • Kupfermann I, Weiss K R (1994) cAMP-dependent phosphorylation of Aplysia twitchin may mediate modulation of muscle contractions by neuropeptide cotransmitters. Proc Natl Acad Sci USA 91:8487–8491

    Article  PubMed  Google Scholar 

  • Pudles J, Moudjou M, Hisanaga S, Maruyama K, Sakai H (1990) Isolation of a giant protein from sea-urchin egg cytomatrix. Exp Cell Res 189:253–256

    Article  PubMed  CAS  Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaul H E (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    Article  PubMed  CAS  Google Scholar 

  • Saide J D (1981) Identification of a connecting filament protein in insect fibrillar flight muscle. J Mol Biol 153:661–679

    Article  PubMed  CAS  Google Scholar 

  • Saide J D, Chin-Bow S, Hogan-Sheldon J, Busquets-Turner L (1990) Z-band proteins in the flight muscle and leg muscle of the honeybee. J Muscle Res Cell Motil 11:125–136

    Article  PubMed  CAS  Google Scholar 

  • Sjöstrand F S (1962) The connections between A-and I-band filaments in striated frog muscle. J Ultrastruct Res 7:225–246

    Article  PubMed  Google Scholar 

  • Soeno Y, Yajima H, Kawamura Y, Kimura S, Maruyama K (1998) Organization of connectin/titin filaments in sarcomeres of differentiating chicken skeletal muscle cells. Mol Cell Biol in press

    Google Scholar 

  • Sorimachi H, Kinbara K, Kimura S, Takahashi M, Ishiura S, Sasagawa N, Sorimachi N, Shimada H, Tagawa K, Maruyama K, Suzuki K (1995) Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence. J Biol Chem 270:31158–31162

    Article  PubMed  CAS  Google Scholar 

  • Tskhovrebova L, Trinick J, Sleep J A, Simmons R M (1997) Elasticity and unfolding of single molecules of the giant protein titin. Nature 387:308–312

    Article  PubMed  CAS  Google Scholar 

  • Vibert P, Edelstein S M, Castellani L, Elliott B W (1993) Mini-titins in striated and smooth molluscan muscles — structure, location and immunological crossreactivity. J Muscle Res Cell Motil 14:598–607

    Article  PubMed  CAS  Google Scholar 

  • Vibert P, York M L, Castellani L, Edelstein S M, Elliot B, Nyitray L. (1996) Structure and distribution of minititins. Adv Biophys 33:199–210

    Article  PubMed  CAS  Google Scholar 

  • Wang K, McClure J, Tu A (1979) Titin: Major myofibrillar components of striated muscle. Proc Natl Acad Sci USA 76:3698–3702

    Article  PubMed  CAS  Google Scholar 

  • Yajima H, Ohtsuka H, Kawamura Y, Kume H, Murayama T, Abe H, Kimura S, Maruyama K (1996) A 11.5-kb 5′-terminal cDNA sequence of chicken breast muscle connectin/titin reveals its Z line binding region. Biochem Biophys Res Comm 223:160–164

    Article  PubMed  CAS  Google Scholar 

  • Yoshidomi H, Ohashi K, Maruyama K (1985) Changes in the molecular size ofconnectin, an elastic protein, in chicken skeletal muscle during embryonic and neonatal development. Biomed Res 6:207–212

    CAS  Google Scholar 

  • Ziegler, C (1994) Titin-related proteins in invertebrate muscles. Comp Biochem Physiol 109A:823–833

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this chapter

Cite this chapter

Maruyama, K. (1999). Comparative aspects of muscle elastic proteins. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0119622

Download citation

  • DOI: https://doi.org/10.1007/BFb0119622

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65484-1

  • Online ISBN: 978-3-540-49231-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics